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Organic transformations catalyzed by methylrhenium trioxide 

Zuolin Zhu 

Major Professor: James H. Espenson 

Iowa State University 

Several organic transformations were found to be catalyzed by 

methylrhenium trioxide, CHsReOs (MTO): decomposition of ethyl diazoacetate 

(EDA) to 2-butenedioic add diethyl esters; cycloadditions of EDA with imines (to 

aziridines), with olefins (to cyclopropanes), and with aldehydes or ketones (to 

epoxides). In the presence of MTO, the reactions of EDA with alcohols, phenols, 

thiols or amines yield, respectively, the corresponding a-alkoxy, a-phenoxy, a-thio 

ethyl acetate or ethyl glycine esters. These reactions occur under mild conditions 

and give satisfactory to high product yields. 

The other reactions catalyzed by MTO are dehydration of alcohols to ethers 

and olefins; direct amination of aromatic alcohols, and the disproportionation of 

alcohols to alkanes and carbonyl compounds. 

MTO activates H2O2 through the formation of two active species (mono-

peroxo-Re(Vn) A, and bisperoxo-Re(Vn), B). These two peroxo species oxidize 

alkynes to the corresponding 1,2-dicarbonyl compounds or carboxylic acids, and 

anilines to nitroso benzenes or N-oxides in high yields. Tertiary phosphines are 

oxidized by molecular oxygen to the corresponding phosphine oxides in the 

presence of MTO. Similarly, oxygen transfer from sulfoxides, epoxides, N-oxides, 

triphenylarsine oxide and triphenylstibine oxide to triphenylphosphine is also 

catalyzed by MTO. The reactions of MTO and epoxides yield 

bis(alkoxy)rheniimi(Vn) complexes. 
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GENERAL INTRODUCTION 

Introduction 

Methylrhenium trioxide (MTO), CHsReOa, was first prepared in 1979. An 

improved route to MTO was devised from dirhenium heptoxide and tetramethyltin 

in the presence of hexafluoroglutaric anhydride reported by Herrmann in 1992. 

MTO forms stable or unstable adducts with electron-rich ligands, such as 

amines (quinuclidine, l,4-diazabicyclo[2,2,2]-octane, pyridine, aniline, 2,2'-

bipyridine), alkynes, olefins, 1,2-diols, catechols, hydrogen peroxide, water, 

thiophenols, 1,2-dithiols, triphenylphosphine, 2-aminophenols, 2-

aminothiophenols, 8-hydroxyquinoline and halides (CI", Br, T). After coordination, 

different further reactions will occur for different reagents. Unstable adducts give 

secondary reaction products, such as the interaction between MTO and olefins that 

leads to olefin metathesis, and the interaction between MTO and water that results 

in oxo-exchange of MTO. There are two kinds of stable adducts. One of them reacts 

with additional substrates, such as the adducts formed from MTO and hydrogen 

peroxide. That reaction yields two peroxo complexes which catalytically oxidize 

almost all oxidizable substrates to their corresponding products (sulfides to 

sulfoxides, olefin to epoxides, tertiary phosphines to tertiary phosphine oxides, 

etc.). MTO is an attractive catalyst for these oxidations because hydrogen peroxide 

is considered to be an environmentally "green" oxidant. Another kind of stable 

adducts are inert, toward further reactions, such as the adducts formed from MTO 

and catechols, MTO and 2,2'-bip)T*idine, etc. 
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These versatile catalytic and noncatalytic reactions of MTO have triggered a 

massive area of research waiting exploration. In order to provide a detailed 

understanding of MTO, and to extend this scheme (Scheme I) which is far from 

complete now, more questions need to be answered about this complex. What kind 

of compounds can coordinate with MTO, are these kinds of complexes stable or 

not, what kind of further reactions can occur? 

CH3 R 

0'' I 
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CH3 
mc,Hs),rx- o = R L 
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Since the ciiscovery of diazo chemicals in 1858 by Peter Griess, the synthetic 

uses of organic diazo compounds through thermal and photochemical processes 

have fovmd important applications in organic chemistry. Due to the complicated 

thermal or photochemical reactions of diazo chemicals, catalytic methods are need 

to supplant those processes for efficient cyclopropanation, dipolar addition and 

insertion. 

Methylrhenium trioxide can catalyze the decomposition of diazo chemicals 

with and without substrates to yield olefins through dimerization; cyclopropanes, 

aziridines and epoxides by cycloaddition; and a-alkoxy esters, a-thio esters and 

glycine esters through insertion. Besides diazo compounds, organic azides also 

have some reactions catal)^ed by MTO as described in Chapter 1. 

Although many efforts have been applied to the catalytic direct ether 

synthesis with transition-metal complexes, there has been no success until the 

appearance of MTO. Alcohols, one structural analog of water, coordinate with 

MTO by a similar pathway to water. 

CH3 CH3 

o'-'if^o ^-hor ^ o'-'irs®" 
o o OR 

This interaction results in formation of ethers, olefins through dehydration of 

alcohols, or products from alcohol amination or alcohol disproportionation. The 

first example of the catalytic direct ether preparation using this transition metal 

complex as catalyst is shown in Chapter 11. 

The transfer of an oxygen atom is one of the fundamental processes in 

chemistry, such as olefin formation by epoxide deoxygenation. Oxygen transfer is 
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still an interesting area of research in organic synthesis and biochemical studies. 

Deoxygenation of epoxides, N-oxides, sulfoxides and triphenylarsine oxide is 

catalyzed by MTO as described in Chapter m. 

Selective oxidation by molecular oxygen is a desirable method for both 

organic and industrial preparations. The first report of MTO being reactive in 

catalytic oxidation with molecular oxygen is given in Chapter HI. 

From the reported studies, it seems to be true that catalytic oxidation with 

hydrogen peroxide as oxidant occurs for almost all chemicals that have 

nucleophilic centers. But many compounds remain untouched so far including 

alkynes and anilines. Investigations of these oxidations are presented in Chapters 

IV and V. 

Chapter VI describes the interaction between MTO and epoxides which 

offers a synthetic method for bis (alkoxy) rhenium (VH) complexes. 

Dissertation organization 

The dissertation consists of six chapters. Chapter I corresponds to a 

manuscript in preparation. Chapters 11, IV and VI are three manuscripts submitted. 

Chapter HI is in press in /. Mol. Catal., and Chapter V has been published in J. Org. 

Chem. Each section is self-contained with its own equations, tables, figures and 

references. Following the last manuscript is the general conclusion. All the work in 

this dissertation was performed by myself. 
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CHAPTER I 

ORGANIC REACTIONS OF ETHYL DIAZOACETATE AND ORGANIC 

AZIDES CATALYZED BY METHYLRHENIUM TRIOXIDE 

A paper prepared for Journal of the American Chemical Society 

Zuolin Zhu and James H. Espenson 

Abstract 

Methylrhenium trioxide (CH3Re03 or MTO) catalyzes several classes of 

reactions of ethyl diazoacetate. Under mild conditions, phenols, alcohols, thiols, 

amines and imines are converted to a-phenoxy ethyl esters, a-alkoxy ethyl esters, 

a-thio ethyl esters, iV-substituted glycine ethyl esters, and aziridines, respectively, 

in good yield. MTO also catalyzes the conversions of carbonyl compounds and 

olefins to epoxides or cyclopropanes. Imination of aromatic aldehydes with orgaruc 

azides in the presence of triphenyl phosphine is also catalyzed by MTO with high 

yields. The MTO-catalyzed reaction of imines and alkenes forms epoxides. 

Intermediate carbenoid and nitrenoid species were proposed to explain the results 

obtained. 

Introduction 

Methylrhenium trioxide, during the relatively short period from the original 

report^ to the more convenient methods now available,^'^ already has found wide 

use in catalysis. The catalytic applications of MTO include the epoxidation'^ and 

metathesis^ of olefins, aldehyde olefination,^ and oxygen transfer.^ Extensive 
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reports have now appeared in the area of MTO-catalyzed substrate oxidations with 

hydrogen peroxide. These include the oxidation of alkenes,^-®"^^ cobalt thiolates,^^ 

alkyl and aryl sulfides,^^ anilines,^^ alkynes,^^ and phosphines.^^ In many of these 

instances, the mechanistic features have been explored, implicating either, and 

usually both, of two rhenium peroxides, CH3Re(0)2(Ti^-02) (A) and CH3Re(0)(ri2-

Certain catalytic applications of MTO to organic reactions that do not utilize 

peroxide have now been realized. We were led in this direction from the 

imderstanding we had developed about the peroxide mechanism. The isoelectronic 

principle suggested the plausibility of two other molecules, analogous to A. We call 

them Ajyj and A^: 

The notation suggests that these intermediates might be nitrene and carbene 

equivalents ("nitrenoid" or "carbenoid" species), in the sense that A itself can be 

regarded as an "oxene" equivalent. Needless to say, we hoped to learn whether 

such species might transfer NH, NR, or CHR groups to an appropriate electron-rich 

acceptor in the same way that A transfers an oxygen. 

02)2(H20), B. 

O O 
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Our initial attempts to form Aj^j used hydroxylamines (and, analogously, 

hydrazines), which are isoelectronic with hydrogen peroxide. Repeated attempts 

along these lines have not yet succeeded. We then discovered that ethyl 

diazoacetate and organic azides will transfer "CHC02Et" and "NR" functional 

groups in reactions that are catalyzed by MTO, giving satisfactory, and often nearly 

quantitative, yields of pure product. Methylrhenium trioxide efficiently catalyzes 

the formation of: (1) alkoxyester, thioester and glycine ester derivatives from 

alcohols, phenols, thiols and secondary or primary amines; (2) aziridines from 

organic imines; (3) organic imines from aromatic aldehydes; (4) cyclopropanes from 

olefins, and (5) epoxides from aldehydes or ketones. The traditional methods for 

many of these transformations are often time-consuming, requiring significant 

work-up, sometimes proceeding in lower yields, and, on a large scale, produce by­

products and wastes. The MTO reactions, on the other hand, are environmentally 

preferred. 

The catalytic reactions are described here, not the detection or validation of 

the suggested intermediates. At the present time Aj»^ and A^ remain hypothetical 

constructs that provide a tentative basis for rationalizing the transformations that 

MTO catalyzes, but they remain unconfirmed. 

Resxilts 

MTO-catalyzed decomposition of ethyl diazoacetate (EDA). In accord with 

a previous report,^ EDA is converted to diethyl maleate (predominantly) and 

fumarate, and to smaller amount of ethyl glyoxalate azine. Both reactions are 

catalyzed by MTO, eq 1.1. Complete reaction of EDA (10 mmol) with 10% MTO in 

dry benzene required 6 hr. at 60 °C, or one week at room temperature. 
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2N2CHC02Et ) Et02CCH=CHC02Et + 2N2 (1.1) 

2N2CHC02Et ) Et02CCH=N-N=CHC02Et + N2 (1.2) 

With MTO, the observed cis:trans ratio of the olefins was 9:1, and in the 

reactions described in subsequent sections, where the olefins were obtained as 

bj^roducts, the cis:trans ratios lay between 7:1 and 9:1. In comparison, the high-

teniperature (> 200 °C) decomposition of EDA gave a trans:cis ratio of 1.3:1. 

The amount of the azine obtained depended on the concentrations of EDA 

and MTO. The azine was obtained in about 10% yield when the MTO was taken in 

only 3% of the amount of the EDA. On the other hand, with MTO present at only 

0.2% of the EDA, all of the EDA was converted to the azine. The variation in the 

concentration of the azine found at the end of the decomposition of the EDA is 

displayed in Figure 1.1. The mathematical analysis of this dependence is given in 

the Discussion section, where the chemical model is presented. 

When trace amounts of water were present, ethyl glycolate (EtC02CH20H) 

formed rapidly; for that reason, all of the reactions reported herein were 

investigated in dry organic solvents. 

Ether formation. A series of phenols and primary, secondary, and tertiary 

aliphatic alcohols were used in the EDA/MTO catalytic system. This resulted in 

alkoxy and phenoxy esters, in which a new ether linkage was realized. The net 

reaction is: 

ROH + N2CHCQ2Et )R0CH2C02Et + N2 (1.3) 
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0.25 
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0.15 

0.05 

0 0.1 0.2 0.3 0.4 0.5 

[EDA] Q 

Figme 1.1 The MTOcatalyzed decomposition of ethyl diazoacetate (EDA) 

yields a mixture of an azine and of diethylmaleate, as shown in 

Scheme 3. The final concentration of the azine product depends 

on the initial concentration of EDA; the smooth curve is the 

least-squares fit to eq A-4, which follows from this reaction 

scheme. 



www.manaraa.com

10 

The reactions were carried out with nearly comparable amounts of EDA and 

alcohol (50 mmol), and 0.4% (0.2 mmol) of MTO. The substrate alcohols and the 

yields of products obtained are listed in Table 1.1. The phenols and the small 

molecular weight primary alcohols react nearly quantitatively (> 87% isolated 

yields). Only a trace of the fumarate and maleate esters were obtained then, and 

none of the azine, even when low levels of MTO were used. The yields dropped 

with the larger and more branched alcohols, the lowest being a 57% yield from tert-

amyl alcohol. The balance of the material was the fumarate and maleate esters. 

Table 1.1 Yields® of alkoxy and phenoxy esters obtained from the reactions of 

alcohols (ROH, ArOH) and ethyl diazoacetate in the presence of MTO 

R Yield (%) Ar Yield (%) 

Methyl 93 C6H5 87 

Ethyl 90 p-Me-C6H4 91 

-Propyl 92 90 

H-Butyl 88 P-Bu'-Cfit 90 

n-Heptyl 84 p-MeO-CgH^ 92 

PhCH2CH2 87 84 

C6H5CH2 89 

p-Me-C6H4CH2 90 

PhC(Me)H 72 

2-Propyl 63 

tert-Amyl 57 

^ The yields are referred to EDA, which was limiting (50 mmol) compared to the 

alcohol (54 mmol). 
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Formation of S-C and N-C single bonds. Analogous to the reactions in the 

preceding section, thiols and (mostly primary) amines are converted with 

EDA/MTO into thioesters (eq 1.4) and glycine esters (eq 1.5). Only a trace of the 

fumarate or maleate esters was observed, and none of the azine, even when MTO 

was used at the 0.5% level. 

R S H + N 2 C H C 0 2 E t — R S C H 2 C 0 2 E t  +  N 2  ( 1 . 4 )  

RNH2 + NzCHCOzEt ) RNHCHsCOzEt + N2 (1.5) 

The use of the thiol and amine reagents as solvent resulted in very fast 

reactions. For the thiols either the MTO was dissolved in EDA and the thiol added 

promptly to the mixture, or (without difference) the EDA was added to a solution 

of the MTO in the thiol. These reactions were complete within minutes with 

isolated yields exceeding 95%; see Table 1.2. For the amines, the MTO was 

dissolved in the amine, and the EDA added last. There reactions were complete in 

one hour and gave >85% product yield; see Table 1.3. 

Synthesis of aziridines. Aziridines result from EDA/MTO in reaction with 

imines, also prepared with MTO catalysis as reported in a subsequent section. 

Aromatic imines were used as substrates in this study. The C=N double bond of the 

imines was converted to an aziridine vmder mild conditions; this cycloaddition 

reaction (eq 6) was catalyzed by MTO. 

R 

cat. MTO Ar N 
ArCH=N-R + NaCHCOaEt ^ 

CHCOaEt (1-6) 
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Table 1.2 Yields^ of thioesters obtained from the reactions of 

thiols and ethyl diazoacetate in the presence of MTO 

RSH Yield (%) RSH Yield (%) 

EtSH 93 CgHgSH 96 

n-PrSH 95 p-MeO-C6H4SH 94 

n-C^H^^SH 95 P-CI-C6H4SH 91 

sec-C4H9SH 89 

^ The yields are referred to EDA, which was limiting (50 mmol) 

compared to the thiol (54 namol). 

Table 1.3 Yields^ of glycine esters obtained from the reactions of 

amines and ethyl diazoacetate in the presence of MTO 

R Yield (%) R Yield (%) 

«-Propyl 87 ^6^5 89 

M-Hexyl 91 p-Me-C^U^ 91 

tert-Butyl 82 p-Cl-C^H^ 83 

PhCH2 84 

PhCH2CH2 85 l-Piperidinyl 88 

1-Fyrrolidinyl 90 

^ The yields are referred to EDA, which was limiting (50 mmol) compared to 

the amine (54 mmol). 
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The yields of the aziridines were essentially quantitative (> 87%), as 

specified in Table 1.4. As to by-products, only a trace amount of the fumarate and 

maleate esters could be detected, and none of the azine. Only a single isomer of the 

aziridine was obtained, as determined by GC-MS. The coupling constant for the 

ring protons for these products are in the range 2-6 Hz, which verifies that the 

trans (E) isomer obtained. For example, the product from PhCH=NPh has = 2.2 

Hz in CDCI3, which agrees with an earlier report.^^ 

Table 1.4 Yields^ of aziridines obtained from aryl imines 

(ArCH=NR) and EDA, with MTO as catalyst 

Yield (%) 

Ar R = «-Hexyl R = M-Butyl R = Phenyl 

C6H5 93 92 87 

p-MeO-CgH4 94 94 92 

P-NO2-C6H4 92 91 

;7-Me-C6H4 93 93 

2-Napthyl 96 96 

^ Isolated yields, after vacuum distillation, relative to EDA, the limiting reagent. 

Formation of epoxides. Carbonyl compounds, both aldehydes and ketones, 

are converted to epoxides by EDA. The net reaction is 

0 Q 
, o +N2CHCO,Et ^ +N 

CO^Et (1.7) 
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Table 1.5 Yields^ of epoxides obtained from aldehydes and ketones 

R2 Yield (%) 

H 79 (52)b 

n-Propyl H 75 

sec-Bu Me 64 

Me 57 

/so-Propyl Me 49 

^ Isolated yields, after vacuum distillation, relative to EDA, the limiting reagent. 

^ The lower yield was obtained when the EDA was added all at once. 

The rates decrease in the order aliphatic aldehydes > aromatic aldehydes > 

ketones. The aldehyde reactions form largely the isomer of the epoxide in which 

the two bulkiest groups (CHC02Et and, say, R^) are in a trans disposition. The 

ketone reactions, on the other hand, yield both geometric isomers in comparable 

amounts, as described in experimental section. In addition to the epoxides, which 

are formed in yields of 49-79% (see Table 1.5), a minor product was also seen in the 

GC-MS data. Although this method is not quantitatively reliable, a yield of some 5-

15% of that product might be inferred. It has a molecular weight exactly equal to 

the combined formula weights of EDA and the carbonyl compound. We were 

unable to isolate this product with vacuum distillation or colvmm chromatography; 

it decomposed in both cases. This product is A3-l,3,4-oxadiazoline, 1, an analogy 

with the 1-pyrazolines formed as a side product along with the cyclopropanes 

formed from, alkenes and EDA (see the next section). 
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y. y 
r2-^0 C02Et 

1 

The reaction of aldeydes or ketones with EDA is clearly not the most useful 

epoxide synthesis that one might devise. More useful epoxide-forming reactions 

include alkene-hydrogen peroxide reactions catalyzed by Nonetheless, 

epoxide formation in these cases provides information as to the breadth of MTO 

catalytic chemistry and is instructive as to the mechanisms. 

Formation of cyclopropanes. Owing to the importance of cyclopropyl rings, 

we chose to investigate cydoaddition reactions of alkenes with EDA/MTO. The 

cydopropanation reactions occur according to this net reaction, 

R'* 3 

R! cat. MTO r1 
)>=<^ H-NaCHCOaEt ^ 

R2 R4 r2 cOaEt (18) 

The olefin itself was used as the solvent; reactions occur but very slowly in 

dry benzene and methylene chloride. Isolated yields of 57-87% of the 

cyclopropanes were obtained (Table 1.6). Again, the reaction forms the 

cyclopropane product in which the bulkiest groups are disposed trans relative to 

one another; singly-substituted olefins give solely the trans product. For 1,1-

disubstituted olefins, two isomers were obtained as reported in experimental 

section. For example, 2-methoxy-propene yields the cydopropanes C and D in 2:1 

ratio. 
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Mei 

Me 

MeC 

Me COgEt COgEt 

C D 

As was the case with the carbonyl compounds, a minor product was 

obtained, but we were unable to isolate or identify it. It has a molecular weight 

equal to the svim of EDA and olefin, and appears to be the l-pyrazoline on the basis 

of the MW and the ^H-NMR spectra (see Discussion). 1-Pyrazolines are produced 

(observed by NMR, but not isolated) from the following reaction:^® 

Decomposition of Phenyl azide. Phenyl azide is catalytically decomposed 

under mild conditions by a trace of MTO in dry benzene (eq 1.10). The product is 

diphenyl diazene (azobenzene), whose ^^C-NMR spectrum in CDCI3 (5 122.69, 

128.80,130.71, and 152.52 ppm) agrees with the literature.^^ 

MGOgC 
+ EDA 

cat. MO(CO)6 

(1.9) Me02C 

2PhN3 cat. MTO ^ Ph-N=N-Ph + 2N2 (1.10) 
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Table 1.6. Yields^ of cyclopropanes formed from olefins and 

ethyl diazoacetate, catalyzed by MTO 

Alkene Product Yield (%) 

2,3-Dimethyl-2-butene Me 57 

Me C02Et 

cis-3-Hexene COgEt 63 

Et 'Et 

frans-4-Octene COgEt 59 

A 
n-Pr \pt 

Cyclohexene 71 
r P^CHCOaEt 

Styrene 81 

COaEt 

a-Methoxystyrene y\ 87 

Ph' ^COaEt 

2-Methoxypropene m 0 

Me' C02Et 

1-Methoxycyclohexene ^OMe 74 

• C02Et 

^ The yields refer to isolated product based on the EDA used. 
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Table 1.7. Yields of imines formed from organic azides and aryl aldehydes, 

catalyzed by MTO, in the presence of triphenylphosphine. 

RN3;R = 

ATCHO Ph «-Bu n-Hexyl 

C5H5CHO 91 91 90 

p-MeO-Cg,H4CHO 90 88 91 

P-NO2-C6H4CHO 92 87 89 

2-NapthylCHO 88 85 86 

^ Yields refer to isolated product, relative to the amount of RN3, 

the limiting reagent. 

Catalytic formation of imines. The reactions of aromatic aldehydes with 

alkyl and aryl azides were examined. They produced imines in good yields (Table 

1,7) when a stoichiometric quantity of triphenylphosphine was added along with a 

catalytic amount of MTO (eq 1.11). These reaction occur even in the absence of 

MTO, but more slowly. 

RN3 + ArCHO + PPh3 ) ArCH=N-R + Nj + PhgPO (1.11) 

Aliphatic imines are very water sensitive. We presume that was the reason 

analogous reactions of aliphatic aldehydes did not succeed. 
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Discvission 

Decomposition of EDA. When catalyzed by MTO, the cfs-olefin was formed 

preferentially, like the same reaction catalyzed by rhodium(n) and rhodium(ni) 

complexes.^^ In contrast, reactions with eerie ammonium nitrate,^^ lithium 

bromide,^^ and copper(II) salts^ yield predominantly the fiomarate. 

Comparisons with traditional methods. The procedures reported herein 

offer certain advantages over those known previously. In particular, the reaction 

conditions are mild and no wastes are produced. To cite some examples we note: 

(1) Ethyl glycine esters are normally prepared by refluxing ethyl bromoacetate and 

amines.^^ 

RNH2 + BrCH2C02Et ) RNHCH2C02Et + NaBr + HO Ac (1.12) 
EtOH(refltix) 

(2) a-Alkoxy ethyl acetate, on the other hand, can be obtained from sodium 

alkoxide, a-haloacetic acid, and ethanol.^^ This requires strong base in one step, 

strong add in the next: 

RONa + CICH2CO2H—5^^^R0CH2C02H + NaCl (1.13a) 

ROCH2C02H+EtOH—^^^J^^|^^R0CH2C02Et (1.13b) 

(3) a-Thio ethyl acetate can be prepared from a-thio acetic acid, sodium methoxide, 

and alkyl bromide under reflux:^® 

HSCH;C02H RSCH2C02Et+NaBr + H20 (1.14) 
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(4) Aziridines are formed from aromatic imines and EDA, catalyzed by metallic 

copper.^ These reactions require one day at 80 °C, and give only 15-30% of the 

aziridine. 

(5) Certain other routes to epoxides are preferable. For example, ClCH2C02Et and 

PhCHO are converted by (Na,K)OEt to the epoxide in 49-63% yields;^® and the 

same method is valid for aryl aldehydes in general.^^ Carbonyl compounds are 

converted to epoxides with LiCH2C02Et, LiNPr*2/ and 12-^^ Ethyl diazoacetate 

reacts with cyclopentanone, catalyzed by boron trifluoride etherate, to yield an 

epoxide, but the yield is <5%.^^ 

Except for the epoxides, the new reactions with EDA/MTO gave higher 

yields. Strong base or acid is not required, which facilitates the workup. The 

reaction between amines and EDA is also catalyzed by Lewis acids other than 

MTO,^'^^ although none of them gave more than a 50% yield. 

The proposed intermediates. A catalytic mechanism by which MTO 

activates hydrogen peroxide for the selective oxidation of an appreciable number of 

substrates has been established.^^"^^'^^'^^"^^ In the course of that research, two 

rhenium peroxides, designated A and B in Scheme 1, have been identified. The 

reaction is accomplished by oxygen transfer from a peroxidic oxygen in these 

compounds, to a substrate with a nucleophilic center that also can accept an oxygen 

atom. The oxygen transfer step recycles the catalytic forms from A to MTO and 

from B to A. 
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Scheme 1 

o o 
11^9 H2O2 ll_^o 

o-vro-

A 
CH3 0H2 

B 

SO s so s 

Based on this mechanism and on the analysis of the products obtained in the 

EDA/MTO systems, we suggest that similar intermediates may intervene as well. 

In particular, we imagine that there might be species we would call, by analogy AQ 

and Bf-. Furthermore, another intermediate, I, may intervene between MTO and 

AQ. The suggested structures are shown in Scheme 2. 

The suggested mechanism. We propose that the key steps in the EDA/MTO 

system are these. First is the formation of these intermediates. Those substrates that 

react to form N-C, S-C, and O-C single bonds (i.e., amines, thiols, and alcohols) 

can be thought of doing so by nucleophilic attack at the new Re-C bond. It is well 

Scheme 2 

^CHC02Et 

MTO I 
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known that atoms become more electrophilic upon coordination to a high 

oxidation-state metal.^^"^^ Indeed, were there no other examples, the conversion of 

the normally nucleophilic peroxide ion into an electrophilic center upon 

coordination to MTO would provide a convincing demonstration. The nucleophilic 

center (the heteroatom) of RNH2, RSH, and ROH will attack the carbon atom of AQ. 

This will lead to the products found, as shown, for example, by the amine reaction 

in eq 1.15. 

H 
Re-;^ ; MTO + RNHCHaCOaB 

•^"-NHR (1-15) 

The products (slowly) obtained when AQ is allowed to form in the absence 

of a substrate can be rationalized on a similar basis. Attack of the nucleophilic EDA 

upon AQ will afford the ester products. On the other hand, attack of EDA upon I 

prior to loss of N2 will afford the azine, as in Scheme 3. 

Scheme 3 

o 
:N-=N-'-CHC02Et 

"^Re \t 
\ CHR k2_ HaC^ \ ^ Et02CCH=N-N=CHC02Et + N2 

I 
n-n 

k3 -N2 

y' "^CHR Et02CCH=CHC02Et + N2 
H3C J 

A N=N--C-HC02Et 
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It is the competition between these reactions, which are wasteful of EDA, 

and the desired reaction such as that in Scheme 2, that accounts for the best )delds 

being obtained when the EDA is not added all at once. We can also use this scheme 

to account for the varying proportions of azine as compared to maleate (including 

fumarate) when the concentration of EDA was varied. The expression for the 

product ratio can be derived from the rate ratio, as given in the Appendix. The fit of 

the data to the resulting equation is displayed in Figxire 1. This fit gives the ratio of 

the rate constants = (64 ± 28) L mol'V 

Those substrates that contain C=N and C=C double bonds )deld three-

membered-ring products; that with the C=0 group we presume does the same, 

except that the phosphine disrupts the structure to excise the oxygen atom from the 

aldehyde. In general, the reaction appears to proceed as shown in Scheme 4. 

Scheme 4 

!l^.9 
; CHCOaEt 

HaC^ ';C H C 0 2 E t  ^  M T O +  / \  

Indeed, even the minor product found in these systems—that with a 

molecular weight equal to the sum of that for the starting material and EDA— 

might be similarly reconciled by this proposal. The unidentified material may be 

formed by a [3+2] addition reaction that involves I rather than A^: 
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O 

^Re'' 
Hsc^/ P."C02a 

N=N \ 
s * 
V^Y 

\ 
I .CHR 

f^2C-^CR2 

This would lead to the l-pyrazoline, P, consistent with the GC-MS and NMR 

data.^ 1-Pyrazolines are a known class of compound, and they have been observed 

from another reaction of EDA, eq 1.17, but were not isolated owing to 

decomposition. 

Me, 
\ 

MeOaC 

MO(CO)6 Me. N=:N 
+ EDA 

Me02C 

COaEt 

(1.17) 

The first intermediate, I, represents the product of a [3+2] cycloaddition 

reaction of EDA to a rhenium-oxygen double bond. The second intermediate, A^^, 

is formed by the elimination of molecular nitrogen. Neither has been isolated to this 

point. A tungsten analog, W, of the first intermediate has been reported.'^ 

OC 

OC 

O 

w 
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The reactions of the organic azides may also be explained in terms of the 

proposed intermediate Ajj. Species I would presumably be formed from MTO by 

the analogous process, and would be subject to nucleophilic attack, leading to the 

products observed, eq 1.18. 

R Re 
T-T ^ ^ "3^ N=N 

II 

-N, 
PhN, 

AiCHO 

MTO 
T 

PhN=NPh + N, 

O 
Ar-^N-R 

PPhs 

Ph3P=0 + ArCH=NR ^ 

Experimental section 

Materials. Butyl, hexyl^'^ and phenyl^^ azides were prepared according to 

the literature. [CAUTION: Although we encountered no difficulties, the potentially 

explosive nature of organic azides should be kept in mind.] The methylrhenium 

trioxide was synthesized from dirhenium heptoxide and tetramethyl tin in the 

presence of perfluoroglutaric anhydride.^"^ Methylene chloride was first purified^ 

and stored under argon in an amber bottle over molecular sieves. Anhydrous 

benzene, ethyl diazoacetate, and all of the substrates were purchased commercially. 

Their purity was checked by GC-MS. 

General procedures: 

(1) a-Alkoxy ethyl esters. The alcohol (50 mmol) and MTO (50 mg, 0.2 

mmol) y/ere dissolved in 100 mL dry benzene (usually) or methylene chloride in a 

three-necked round bottom flask filled with a water-cooled condenser. The 
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temperature was maintained below 60 °C (benzene) or at reflux (methylene 

chloride). Ethyl diazoacetate (50 mmol) was added dropwise. After two days, 

during which time the reaction was monitored by GC-MS, the product was 

recovered by vacuum distillation. The products were identified by comparison to 

literature data.^^-^^-^^'^® For these and other previously-known materials, the 

spectroscopic parameters and other analytical data are given in the Supporting 

information; only for the new compounds will the data be given here. 

(2) jV-Substituted glycine ethyl esters. The first method was the same as in 

(1). Alternatively, MTO (0.2 mmol) was dissolved in the amine (54 mmol) under 

dry argon in a three-necked round-bottom flask fitted with a water-cooled 

condenser and heated to 60 °C. The ethyl diazoacetate (50 mmol) was added 

dropwise; with this method the reactions were complete within one hour, it being 

much faster here where no solvent diluent was used. The products were identified 

(Supporting information), in comparison with literature 

(3) a-Thio ethyl esters. The first method imder (1) was used, except that the 

reaction was allowed to proceed for three days before isolation of the product by 

vacuum distillation. Alternatively, the MTO (0.2 mmol) was dissolved in the thiol 

(54 mmol) under dry argon in a three-necked round-bottom flask. The EDA (50 

mmol) was added dropwise with vigorous stirring; this highly exothermic 

(caution!) reaction was complete within a few minutes. This procedure can equally 

well be carried out in the reverse order: the thiol may be added dropwise into a 

solution of MTO in EDA. The products were identified by comparison with data in 

the literature;^^'^'^^'^^'^^ see the Supporting information. 
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(4) Aziridines. The iirdne (35 mmol, prepared as in (7)) and MTO (250 mg, 1 

mmol) were dissolved in 100 mL dry benzene in a three-necked round bottom flask 

fitted with a water-cooled condenser, flushed with dry argon or nitrogen for ca. 10 

min., and maintained at ca. 60 °C. Ethyl diazoacetate (30 mmol) was added 

dropwise with stirring. After the addition was complete, stirring was continued 

another 4-6 hr., during which time the reaction was monitored by GC-MS. Finally, 

the mixture was cooled to room temperature and the solvent removed under 

vacuimi. The aziridines were isolated by vacuum distillation, and purified on a 

silica gel colimin from which they were eluted with benzene. 

The products were identified by spectroscopic and analytical data:^-^^'^^ 

From PhCH=N-Bun ^H-NMR (CDCI3), 5 ppm 0.93-1.36 (m, 8H), 1.70 (m, 

2H), 3.36 (d, IH), 3.61 (t, 2H), 3.88 (d, IH), 4.14 (q, 2H), 7.41-7.70 (m, 5H); 13c-NMR 

(CDCI3), 6 ppm 13.89, 14.08, 20.44, 33.01, 45.94, 47.45, 61.02, 61.34, 127.98, 128.35, 

130.40,139.12, and 167.62. Anal. Calcd for C15H21NO2 (247.338): C, 72.84; H, 8.56; 

N, 5.66. Found; C, 72.61; H, 8.50; N, 5.71. 

PhCH=N-Ph, IH-NMR (CDCI3), 5 ppm 1.09 (t, 3H), 3.27 (d, IH), 3.82 (d, 

IH), 4.09 (q, 2H), 7.19-7.82 (m, lOH); ^^C-NMR (CDCI3), S ppm 14.10, 45.82, 46.31, 

61.13,120.85, 125.91, 126.98, 128.53, 129.14,129.30,136.71, 152.09, and 167.53. Anal. 

Calcd for C17H17NO2 (267.33): C, 76.35; H, 6.40; N, 5.23. Found: C, 76.54; H, 6.30; N, 

5.09. 

FhCH=N-Hexyin, ^H-NMR (CDCI3), 5 ppm 0.87 (t, 3H), 1.13-1.68 (m, IIH), 

3.41 (d, IH), 3.59 (t, 2H), 3.84 (d, IH), 4.17 (q, 2H), 7.31-7.81 (m, 5H); l^C-NMR 

(CDCI3), 5 ppm 14.07, 14.14, 22.61, 27.02, 30.69, 31.66, 46.02, 47.51, 61.21, 61.77, 

126.89, 128.15, 130.25, 136.33, and 167.65. Anal. Calcd for Ci7H25N02 (275.391): C, 

74.14; H, 9.15; N, 5.09. Found: C, 74.12; H, 9.20; N, 5.04. 
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;?-Me-C6H4CH=N-Bu", ^H-NMR (CDCI3), 5ppm 0.95-1.36 (m, 8H), 1.71 (m, 

2H), 2.31 (s, 3H), 3.25 (d, IH), 3.62 (t, 2H), 3.81 (d, IH), 4.09 (q, 2H), 6.91-7.30 (m, 

4H); 13C-NMR (CDCI3), 5 ppm 13.92,14.19, 20.41, 21.45, 33.01, 45.64, 46.10, 60.71, 

61.14, 127.35 , 127.95, 129.11, 138.76, and 167.58. Anal. Calcd for C16H23NO2 

(261.36): C, 73.52; H, 8.87; N, 5.34. Found: C, 71.23; H, 8.42; N, 5.21. 

;?-Me-C6H4CH=N-Hexyl«, ^H-NMR (CDCI3), 8 ppm 0.87-1.68 (m, 14H), 2.31 

(s, 3H), 3.21 (d, IH), 3.60 (t, 2H), 3.77 (d, IH), 4.07 (q, 2H), 6.80-7.21 (m, 4H); 13c-

NMR (CDCI3), 5 ppm 14.07, 14.11, 21.46, 22.61, 27.02, 30.70, 31.65, 45.67, 46.05, 

61.11, 61.73, 126.77,127.95, 129.09,138.65, and 167.54. An^. Calcd for Ci8H27N02 

(289.417): C, 74.70; H, 9.40; N, 4.84. Found: C, 74.48; H, 10.33; N, 4.81. 

;;-MeO-C6H4CH=N-Bu«, ^H-NMR (CDCI3), 5 ppm 0.91-1.70 (m, lOH), 3.14 

(d, IH), 3.58 (t, 2H), 3.76 (d, IH), 3.82 (s, 3H), 4.31 (q, 2H), 6.80-7.70 (m, 4H); 13C-

NMR (CDCI3), 5 ppm 13.81, 14.12, 20.41, 32.08, 45.57, 46.22, 55.51, 61.04, 61.55, 

113.85,116.85,129.13,129.45,167.14. Anal. Calcd for C16H23NO3 (277.364): C,69.29; 

H, 8.36; N, 5.05. Found: C, 69.02; H, 8.11; N, 5.06. 

;;-MeO-C6H4CH=N-Hexyl«, ^H-NMR (CDCI3), 5 ppm 0.89-1.69 (m, 14H), 

3.15 (d, IH), 3.54 (t, 2H), 3.76 (d, IH), 3.82 (s, 3H), 4.32 (q, 2H), 6.81-7.73 (m, 4H); 

13C-NMR (CDCI3), 5 ppm 14.06,14.09, 22.61, 27.04, 30.98, 31.66, 45.61, 46.27, 55.54, 

61.08, 61.74, 113.99, 114.38, 129.36, 129.57, 167.21. Anal. Calcd for C18H27NO3 

(305.42): C, 70.79; H, 8.91; N, 4.59. Found: C, 71.16; H, 9.04; N, 4.60. 

;7-MeO-C6H4CH=Ph, ^H-NMR (CDCI3), 5 ppm 1.11 (t, 3H), 3.26 (d, IH), 

3.79 (d, IH), 3.81 (s, 3H), 4.10 (q, 2H), 6.80-7.69 (m, 9H); ^3C-NMR (CDCI3), 5 ppm 

14.07, 45.72, 46.31, 55.53, 61.08,114.12,114.47,120.85,125.94,129.21,129.54,129.75, 

152.11, 167.47. Anal. Calcd for C18H19NO3 (297.357): C, 72.70; H, 6.44; N, 4.71. 

Found: C, 71.95; H, 6.50; N, 4.66. 



www.manaraa.com

29 

p-N02-CgH4CH=N-Bu« ^-NMR (CDCI3), 5 ppm 0.91-1.67 (m, lOH), 3.34 

(d, IH), 3.63 (t, 2¥0, 3.91 (d, IH), 4.11 (q, 2H), 7.80-8.33 (m, 4H); ^^C-NMR (CDCI3), 

5 ppm 13.84, 14.17, 20.45, 32.79, 46.27, 48.49, 61.24, 61.71, 123.89, 128.11, 129.17, 

141.28, 167.71. Anal. Calcd for C15H20N2O4 (292.336): C,61.63; H, 6.90; N, 9.58. 

Found: C, 61.51; H, 6.83; N, 9.56. 

p-N02-CgH4CH=N-Hexyl«, ^H-NMR (CDCI3), 5 ppm 0.87-1.70 (m, 14H), 

3.33 (d, IH), 3.66 (t, 2H), 3.87 (d, IH), 4.09 (q, 2H), 7.80-8.41 (m, 4H); ^^C-NMR 

(CDCI3), 5 ppm 14.04, 14.13, 22.57, 27.02, 30.68, 31.61, 46.22, 48.33, 61.19, 62.04, 

123.85,126.78,128.65,141.38,167.67. Anal. Calcd for C17H24N2O4 (320.39): C, 63.73; 

H, 7.55; N, 8.74. Found: C, 63.31; H, 7.73; N, 8.70. 

2-Naphtliyl-CH=N-Bun, ^H-NMR (CDCI3), 5 ppm 0.94-1.73 (m, lOH), 3.29 

(d, IH), 3.66 (t, 2H), 3.85 (d, IH), 4.11 (q, 2H), 7.40-8.03 (m, 7H); 13C-NMR (CDCI3), 

5 ppm 13.92,14.13,20.50,33.06,45.9,46.3, 61.19,61.60, 125.82,126.98,127.83,128.40, 

128.54, 128.69, 129.58, 133.12, 134.01, 136.57, 167.73. Anal. Calcd for C19H23NO2 

(297.40): C, 76.73; H, 7.79; N, 4.71. Found: C, 76.84; H, 7.62; N, 4.81. 

2-Naphthyl-CH=N-Hexyln iH-NMR (CDCI3), 5 ppm 0.87-1.67 (m, 14H), 

3.31 (d, IH), 3.61 (t, 2H), 3.94 (d, IH), 4.22 (q, 2H), 7.41-8.02 (m, 7H); 13C-NMR 

(CDCI3), 6 ppm 14.07, 14.15, 22.62, 27.07, 30.95, 31.68, 45.75, 46.43, 61.23, 61.95, 

123.87, 126.73, 126.97, 127.83, 128.49, 128.57, 129.58, 133.14, 134.05, 134.49, 167.77. 

Anal. Calcd for C21H27NO2 (325.451): C, 77.50; H, 8.36; N, 4.30. Found: C, 77.39; H, 

8.32; N, 4.31. 

(5) Epoxides. MTO (50 mg, 0.2 mmol) was dissolved in 20 mL of the 

aldehyde or ketone. The flask was sealed with a rubber stopper, and the solution 

brought to 50-60 °C. Ethyl diazoacetate (5 mL, 48 mmol) was added dropwise 

while the pressure was relieved occasionally. After three days, during which time 
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the reaction was monitored with GC-MS, the product was isolated by vacuum 

distillation. The products were identified spectroscopically (see the Supporting 

information) in comparison with data from the literature.^^"^^ 

(6) Cyclopropanes. The method was the same as that used for the epoxides, 

and the products (see the Supporting information) were similarly identified. 

Some of these substrates (e.g., styrene), but not all (e.g., a-methylstyrene), lead to 

small yields of compounds believed from MS and NMR data (Supporting 

information) to be l-pyrazolines. Stjo-ene, for example, forms two isomers in a total 

yield of 14% (transxis ~3.8:1); these products decrease on standing (2% after 3 

days), as more cyclopropane is formed. 

(7) Imines. The aryl aldehyde (30 mmol), triphenylphosphine (31 mmol) and 

MTO (1 mmol) were dissolved in 100 mL dry benzene. The solution was flushed 

with dry argon or nitrogen for ca. 10 min. at room temperature, then the organic 

azide (30 mmol) was added dropwise with stirring. After an additional 2 hr. 

stirring, the solvent was removed by rotary evaporation. The imines were obtained 

by vacuum distillation or by recrystallization from ethanol. The and ^^C-NMR 

data for these products is given in Table 1.8. 
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Table 1.8. NMR data^ for imines formed from the reactions of aldehydes, 

organic azides, and triphenylphosphine in the presence of MTO 

Imine 

2-N aphthyl-CH=N-Bu 

2-Naphthyl-CH=N-Ph 

2-NaphthyI-CH=N-hexyl 

Ph-CH=N-Bu 

^H-NMR 

0.95 (t, 3H), 7.50(m) 

1.40 (m, 2H), 7.85 (m) 

1.73 (m, 2H), 7.97 (m) 

3.65 (t, 2H), 8.41 (s, IH) 

7.28 (m), 7.44 (m) 

7.57 (m), 7.93 (m) 

8.20 (m), 8.63 (s) 

0.87 (m), 1.33 (m) 

1.67 (m), 3.60 (t) 

7.48 (m), 7.85 (m) 

7.95 (m), 8.30 (s) 

0.93 (tX 1.36 (m) 

1.69 (m), 3.62 (t) 

7.41 (m), 7.71 (m) 

8.25 (s) 

^3C-NMR 

13.92, 20.49,33.06 

61.59,123.87,126.38 

126.98,127.83,128.40 

128.54,129.58,133.12 

134.01,134.59,160.80 

120.91,123.91,125.98 

126.61.127.53.127.93 

128.67,128.77,129.17 

131.23.133.09.133.94 

135.02,152.09,160.36 

14.07, 22.62, 27.07 

30.95,31.68,61.94 

123.88,126.37,126.97 

127.83,128.40,128.54 

129.60,133.11, 134.01 

134.58,160.77 

13.88,20.43,32.98 

61.45,127.96,128.52 

130.38,136.34,160.67 
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Table 1.8 
(continued) 

Ph-CH=N-hexyl 0.87 (t),1.34(m) 14.06, 22.60, 27.01 

1.68 (m),3.60 (t) 30.87 31.65, 61.80 

7.39 (m), 7.71 (m) 127.98,128.53,130.40 

8.25 (s) 136.33,160.70 

Ph-CH=N-Ph 7.15 (m), 7.30 (m) 120.85,125.91,128.76 

7.41 (m), 7.84 (m) 128.79,129.14.131.36 

8.38 (s) 136.31,152.09,160.40 

4-MeO-C6H4CH=N-Bu 1.71 (m), 3.59 (t) 61.54,113.95,114.30 

3.81 (s), 6.89 (m) 129.32,129.50,159.99 

7.64 (mX 8.18 (s) 

4-MeO-C6H4CH=N-hexyl 0.89 (t),1.35 (m) 14.06, 22.62, 27.04 

1.68 (m), 3.54 (t) 30.99,31.67,55.55 

3.82 (sX 6.89 (m) 61.73,113.93,114.30 

7.64 (m), 8.18 (s) 129.33,129.50,159.98 

4-MeO-C6H4CH=N-Ph 3.82 (s), 6.88 (m) 55.56,113.96,114.30 

7.16 (m), 7.30 (m) 120.85,125.95,128.76 

7.41 (m), 7.64 (m) 129.15,129.34,129.51 

8.21 (s) 159.89 
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Table 1.8 
(continued) 

4-N02-C6H4CH=N-BU 0.91 (t), 1.36 (m) 13.84, 20.45,32.78 

1.66 (m), 3.62 (m) 61.65,123.83,128.30 

7.82 (m), 8.21 (m) 128.63,141.82,158.33 

8.29 (s) 

4-N02-C6H4CH=N-Hexyl 1.70 (m), 3.65 (t) 30.68,31.60,62.01 

7.88 (m), 8.25 (m) 123.85,128.31,128.65 

8.33 (s) 141.83,158.33 

4-N02-C6H4CH=N-Ph 6.67 (m), 7.16 (m) 115.09,118.54,120.97 

7.99 (m), 8.25 (m) 124.01,127.08,129.28 

8.45 (s) 129.34,146.37,157.39 

^ In CDCI3, chemical shifts referenced to SiMe4. 
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Table S-1.1. NMR parameters in CDCI3 for a-alkoxy ethyl esters obtained 

from the alcohols listed 

Methanol. iR-NMR (CDCI3X 6 ppm 1.29 (t, 3H), 3.46 (s, 3H), 4.04 (s, 2H), 4.24 (q, 

2H); 13C-NMR (CDCI3), 5 ppm 14.21, 59.24, 60.77,69.95,170.26. 

Ethanol. ^H-NMR (CDCI3), 5ppm 1.26 (m, 6H), 3.56 (q, 2H), 4.08 (s, 2H), 4.21 (q, 

2H); 13C-NMR (CDCI3), 6 ppm 14.01,15.27,60.87,67.24,68.03 and 170.26. 

1-Propanol. iR-NMR (CDCI3), 5ppm 0.92 (t, 3H), 1.28 (t, 3H), 1.56 (m, 2H), 3.50 (t, 

2H), 4.09 (s, 2H), 4.22 (q, 2H); l^C-NMR (CDCI3), 5 ppm 10.47, 14.21, 24.32, 60.85, 

68.33, 74.12 and 170.68. 

sec-Propanol. iR-NMR (CDCI3), 6 ppm 1.24 (m, 9H), 3.62 (m, IH), 4.05 (s, 2H), 4.21 

(q, 2H); l^C-NMR (CDCI3), 6 ppm 14.22,22.37,60.80,68.21, and 170.66. 

tert-Amyl alcohol. iR-NMR (CDCI3), 5 ppm 0.90 (t, 3H), 1.18 (s, 6H), 1.28 (t, 3H), 

1.52 (q, 2H), 4.05 (s, 2H), 4.21 (q, 2H); 13C-NMR (CDCI3), 5 ppm 8.75,14.23, 27.87, 

35.40, 60.82,68.41, 79.68 and 170.45. 

1-Butanol. ^H-NMR (CDCI3), 5 ppm 0.93 (t, 3H), 1.28 (m, 7H), 3.53 (t, 2H), 4.06 (s, 

2H), 4.23 (q, 2H); "C-NMR (CDCI3), 5 ppm 13.89,14.22, 19.02, 34.87, 60.85, 68.35, 

71.73 and 170.78. 

1-Heptanol. ^H-NMR (CDCI3), 5 ppm 0.86 (m, 3H), 1.26 (m, IIH), 1.55 (m, 2H), 

3.50 (t, 2H), 4.04 (s, 2H), 4.21 (q, 2H); 13C-NMR (CDCI3), 5 ppm 14.09,14.23, 22.62, 

25.96, 29.12,29.56, 31.81,60.79, 68.37, 72.02 and 170.65. 
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Table S-1.1 
(continued) 

Phenol. IH-NMR (CDCI3), 5 ppm 1.29 (t, 3H), 4.26 (q, 2H), 4.62 (s, 2H), 6.90-7.31 

(m, 5H); 13C-NMR (CDCI3), 5 ppm 14.17, 61.35, 65.43,114.66,121.72,129.55,157.82 , 

and 168.97. 

p-Me-Phenol. iR-NMR (CDCI3), 5 ppm 1.28 (t, 3H), 2.27 (s, 3H), 4.26 (q, 2H), 4.57 

(s, 2H), 6.82-7.14 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.16, 20.47, 61.34 , 65.80, 

114.67,129.97,131.21,155.87, and 169.10. 

p-Et-Phenol. iR-NMR (CDCI3), 5 ppm 1.20 (m, 6H), 2.54 (q, 3H), 4.26 (q, 2H), 4.58 

(s, 2H), 6.82-7.12 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.16,15.83, 28.01, 61.34, 65.79, 

114.68,130.11,136.92,157.83, and 169.22. 

p-ferf-Bu-Phenol. iR-NMR (CDCI3), 5 ppm 1.28 (m, 12H), 4.27 (q, 2H), 4.58 (s, 2H), 

6.82-7.33 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.16, 31.67, 34.22, 61.35, 65.81,113.91, 

127.33,143.62,155.33, and 169.21. 

;7-Cl-Phenol. ^H-NMR (CDCI3), 5 ppm 1.29 (t, 3H), 4.26 (q, 2H), 4.64 (s, 2H), 6.83-

7.26 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.16, 61.35, 65.40, 115.82, 126.88, 129.97, 

156.52, and 169.19. 

p-MeO-Phenol. ^H-NMR (CDCI3), 5 ppm 1.28 (t, 3H), 3.76 (s, 3H), 4.26 (q, 2H), 

4.51 (s, 2H), 6.86 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.16, 55.92, 61.33, 65.91, 

113.96,116.72,149.53,156.32, and 169.13. 
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Table S-1.1 
(continued) 

Benzylalcohol ̂ H-NMR (CDCI3), 5 ppm 1.29 (t, 3H), 4.09 (s 2H), 4.24 (q, 2H), 4.64 

(s, 2H), 7.33 (m, 5H); 13C-NMR (CDCI3), 5 ppm 14.22, 60.90, 67.24, 73.36, 128.03, 

128.10,128.51,137.12, and 170.39. 

Phenethyl alcohol iH-NMR (CDCI3), 5 ppm 1.28 (t, 3H), 2.95 (t, 2H), 3.55 (t, 2H), 

4.06 (s 2H), 4.20 (q, 2H), 7.18 (m, 5H); ^3C-NMR (CDCI3), 6 ppm 14.20, 38.02, 60.85, 

68.42, 72.83,126.45,128.51,128.96,138.24, and 170.65. 

p-Me-Benzylalcohol iR-NMR (CDCI3), 6 ppm 1.28 (m, 6H), 3.66 (s, 2H), 4.03 (s 

2H), 4.21 (q, 2H), 7.12 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.22, 21.02, 60.88, 68.42, 

73.42,127.11,128.91,137.24,138.12, and 170.95. 

sec-Phenethyl alcohol iR-NMR (CDCI3), 5 ppm 1.28 (m, 6H), 3.66 (q, IH), 4.09 (s 

2H), 4.26 (q, 2H), 7.21 (m, 5H); 13C-NMR (CDCI3), 5 ppm 14.15, 24.68, 60.76, 65.83, 

78.53,127.86,128.33,128.58,133.14, and 170.59. 
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Table S-1.2. NMR parameters in CDCI3 for N-substituted glycine ethyl esters 

obtained from the amines listed 

n-Propylamine, ^H-NMR (CDCI3), 5 ppm 0.91 (t, 3H), 1.28 (t, 3H), 1.52 (m, 2H), 

1.81 (s, IH), 2.56 (t, 2H), 3.38 (s, 2H), 4.16 (q, 2H); I^CNMR (CDCI3), 5 ppm 11.78, 

14.20,27.77,49.65,51.02,60.56, and 172.54. 

n-Hexylamine, iH-NMR (CDCI3), 5ppm 0.88 (t, 3H), 1.28 (m, IIH), 1.76 (s, IH), 

2.57 (t, 2H), 3.39 (s, 2H), 4.16 (q, 2H); 13C-NMR (CDCI3), 5 ppm 14.01, 14.20, 22.57, 

26.88,30.00, 31.70,49.65,51.01,60.56, and 172.57. 

l-Piperidine, IR-NMR (CDCI3), 5ppm 1.28 (t, 3H), 1.44 (m, 2H), 1.62 (m, 4H), 2.49 

(t, 4H), 3.18 (s, 2H), 4.17 (q, 2H); 13C-NMR (CDCI3), 6 ppm 14.22, 24.01, 25.95,54.30, 

54.31,60.21, and 170.64. 

l-PyxTolidine, ^H-NMR (CDCI3), 5 ppm 1.28 (t, 3H), 1.83 (m, 4H), 2.64 (m, 4H), 3.33 

(s, 2H), 4.18 (q, 2H); 13C-NMR (CDCI3), 5 ppm 14.21, 23.88, 53.92, 57.04, 60.28, and 

170.89. 

Aniline, iR-NMR (CDCI3), 6 ppm 1.28 (t, 3H), 2.03 (s, IH), 3.88 (s, 2H), 4.24 (q, 

2H), 6.75-7.21 (m, 5H); 13C-NMR (CDCI3), 5 ppm 14.18,45.86, 60.29,115.44,128.26, 

129.28,145.81, and 170.89. 

p-Me-Aniline, iR-NMR (CDCI3), 5 ppm 1.28 (t, 3H), 1.98 (s, IH), 2.21 (s, 3H), 3.79 

(s, 2H), 4.24 (q, 2H), 6.65-7.06 (m, 4H); ^3C-NMR (CDCI3), 5 ppm 14.19, 20.33, 45.56, 

60.27,115.31,129.47,137.35,143.96, and 171.18. 
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p-Cl-Aniline, iR-NMR (CDCI3), 5 ppm 1.29 (t, 3H), 2.14 (s, IH), 3.96 (s, 2H), 4.25 

(q, 2H), 6.68-7.22 (m, 4H); 13C-NMR (CDCI3), 6 ppm 14.21, 46.72, 60.31, 116.23, 

129.51,133.33,145.01, and 172.11. 

Benzylamine, iR-NMR (CDCI3), 6 ppm 1.27 (t, 3H), 1.89 (s, IH), 3.39 (s, 2H), 3.79 

(s, 2H), 4.18 (q, 2H), 7.25 (m, 5H); 13C-NMR (CDCI3), 5 ppm 14.23, 50.08, 53.24, 

60.52,127.10,128.22,128.31,139.52, and 172.43. 

Phenethylamine, iR-NMR (CDCI3), 5 ppm 1.28 (t, 3H), 1.81 (s, IH), 2.68 (t, 2H), 

2.94 (t, 2H), 3.39 (s, 2H), 4.17 (q, 2H), 7.19 (m, 5H); ^3C-NMR (CDCI3), 6 ppm 14.20, 

43.85,48.04,54.01, 60.61,126.03,128.47,128.85,141.35, and 172.33. 

ferf-Butylamine, ^H-NMR (CDCI3), 5 ppm 1.27 (m, 12H), 1.93 (s, IH), 3.38 (s, 2H), 

4.16 (q, 2H); ^3C-NMR (CDCI3), 5 ppm 14.16,33.45, 56.74,60.48, and 172.53. 



www.manaraa.com

40 

Table S-1.3. NMR parameters for a-thio ethyl esters obtained from the thiols listed. 

Ethanethiol. ^H-NMR (CDCI3), 5 ppm 1.28 (m, 6HX 2.63 (q, 2H), 3.20 (s, 2H), 4.16 

(q, 2H); 13C-NMR (CDCI3), 5 ppm 14.14,14.15, 26.58, 33.31, 61.24, and 170.55. 

Thiophenol. ^H-NMR (CDCI3), 5 ppm 1.22 (t, 3H), 3.64 (s, 2H), 4.18 (q, 2H), 7.21-

7.50 (m, 5H); 13C-NMR (CDCI3), 6 ppm 14.07, 36.72, 61.56, 126.96,129.07,130.01, 

134.95, and 169.73. 

1-Propanethiol. ^H-NMR (CDCI3), 6 ppm 0.98 (t, 3H), 1.21 (t, 3H), 1.62 (m, 2H), 

2.54 (q, 2H), 3.18 (s, 2H), 4.15 (q, 2H); 13C-NMR (CDCI3), 5ppm 12.79,14.10, 24.87, 

32.73,35.62,61.51,170.62. 

sec-Butanethiol. ^H-NMR (CDCI3), 5 ppm 0.95 (t, 3H), 1.20-1.72 (m, 8H), 2.91 (m, 

IH), 3.15 (s, 2H), 4.16 (q, 2H); 13C-NMR (CDCI3), 5 ppm 11.43, 14.09, 25.11, 28.41, 

32.60,41.42,61.22,170.47. 

1-Hexanethiol. ^H-NMR (CDCI3), 6 ppm 0.85 (t, 3H), 1.19-1.77 (m, IIH), 2.61 (q, 

2H), 4.09 (q, 2H); 13C-NMR (CDCI3), 5 ppm 13.97, 14.08, 22.59, 24.66, 28.23, 29.60, 

32.69,38.33,61.18,170.11. 

4-ChlorothiophenoL ^H-NMR (CDCI3), 5 ppm 1.21 (t, 3H), 3.68 (s, 2H), 4.16 (q, 

2H), 7.13 (m, 4H); 13C-NMR (CDCI3), 5 ppm 14.06, 35.75, 61.54, 130.11, 131.93, 

131.94,136.43,170.03. 

4-MethoxybenzenetliioL ^H-NMR (CDCI3), 5 ppm 1.21 (t, 3H), 3.37 (s, 2H), 3.74 (s, 

3H), 4.12 (q, 2H), 6.83-7.37 (m, 4H); 13C-NMR (CDCls^), 5 ppm 14.07, 35.55, 55.26, 

61.54,115.73,121.42,133.14,159.41,169.66. 
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Table S-1.4. NMR parameters in CDCI3 for the epoxides obtained from 

the specified aldehydes and ketones. 

Benzaldehyde, IH-NMR (.CDCI3), 6 ppm 1.32 (t, 3H), 3.49 (d, IH), 4.08 (d, IH), 4.27 

(q, 2H), 7.28-7.42 (m, 5H). 

n-Pr-CHO, ^H-NMR (CDCI3), 6 ppm 0.98-1.20 (m, 6H), 1.42 (m, 2H), 1.72 (m, 2H), 

3.56 (m, IH), 4.15 (d, IH), 4.11 (q, 2H). 

n-Bu-C(0)-Me, Both GC/MS and ^H-NMR (CDCI3) show two epoxide products 

were formed. ̂ H NMR (CDCI3), 5ppm 0.90-1.54, C: 1.29 (s), 3.12(s), 4.18 (q); D: 1.33 

(s), 3.10 (s), and 4.16(q). A/B=7.6 and C is fraws-product. 

i-Pr-C(0)-Me, also formed two epoxides. ^H-NMR (CDCI3), 5 ppm C: 0.88 (d), 1.05 

(d), 1.28 (t), 1.72 (m), 1.23 (s), 3.14(s), 4.18 (q); D; 0.96 (d), 1.02 (d), 1.21 (s), 1.30 (t), 

1.52 (m), 3.12 (s), 4.17 (q). C/D ratio is 8.1. 

Ph-C(0)-Me, two epoxide products were formed. ^H-NMR (CDCI3), 5 ppm C: 1.22 

(s), 1.26 (t), 3.11 (s), 4.16 (q) and 7.42 (m). D: 1.26 (t), 1.30 (s), 3.07 (s), 4.16 (q) and 

7.42 (m). OD ratio is 7.5. 
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Table S-1.5. NMR and MS data for the cydopropanes formed from the alkenes 

listed, and the (presumably) 1-pyrazoline side products 

2^-Dimethyl-2-butene, iR-NMR (CDCI3), 5 ppm 1.18 (s, 12H), 1.24 (m, 4H), 4.07 

(q, 2H); 13C-NMR (CDCI3), 5 ppm 14.72, 16.88, 23.57, 29.89, 59.43, 172.11. MS (CI, 

NH3) m/e: 171 (M+H+) and 188 (M+NH4+). 

cis-3-Hexene, ^H-NMR (CDCI3), 6 ppm 0.71-1.70 (m, 16H), 3.90 (q, 2H). MS (CI, 

NH3) m/e: 171 (M+H+) and 188 (M+NH4+). 

cis-3-Hexene, ^H-NMR (CDCI3), 5 ppm 0.80-2.01 (m, 20H), 3.80 (q, 2H). MS (CI, 

NH3) m/e: 199 (M+H+) and 216 (M+NH4+). 

Cyclohexene, ^H-NMR (CDCI3), 5 ppm 0.95-2.12 (m, 14H), 4.00 (q, 2H). MS (CI, 

NH3) m/e: 169 (M+H+) and 186 (M+NH4+). 

Styrene, ^H-NMR (CDCI3), 5ppm 0.96 (t, 3H), 1.47-2.12 (m, 4H), 4.18 (q, 2H), 7.00-

7.36 (m, 5H). 13c-NMR (CDCI3), S ppm 14.51, 16.89, 24.30, 26.41, 60.59, 126.59, 

126.61,129.03,140.82,172.12. 

Byproduct (14% immediately, 2% after 3 days). Isomer C: 5/ppm: 1.48 (t, 

3H), 1.74 (m, IH), 2.50 (m, IH), 4.30 (q, 2H), 5.48 (t, IH, J = 8.4 Hz), 5.97 (t, 2H, J = 

8.4 Hz), 7.19-7.45 (m, 5H); Isomer T: 0.96 (t, 3H), 1.90 (m, IH), 2.06 (m, IH), 4.15 (q, 

2H), 4.99 (t, IH, J = 10.5 Hz), 5.69 (t, IH, J = 10.5 Hz), 7.22-7.53 (m, 5H). Ratio, T/C = 

3.8:1. 
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Table S-1.5 
(continued) 

a-MeO-styrene, two isomers were formed. ^H-NMR (CDCI3), 5 ppm C: 0.97 (t, 

3H), 1.49 (dd, IH), 1.81 (dd, IH), 2.32 (dd, IH), 3.14 (s, 3H), 3.88 (q, 2H) and 7.21-

7.52 (m, 5H). D: 1.29 (t, 3H), 1.41 (dd, IH), 1.52 (dd, IH), 2.06 (dd, IH), 3.22 (s, 3H), 

4.22 (q, 

2H), 7.20-7.52 (m, 5H). A/B about 1:1. MS (CI, NH3) m/e: 221 (M+H+) and 238 

(M+NH4+). 

2-MeO-propene, two isomers were formed. ^H-NMR (CDCI3), 5 ppm C: 1.26 (t, 

3H), 1.49 (s, 3H), 1.61 (m, 2H), 1.86 (dd, IH), 3.29 (s, 3H), 4.14 (q, 2H). D: 0.95 (dd, 

IH), 1.27 (t, 3H), 1.37 (m, IH), 1.44 (s, 3H), 1.71 (m, IH), 3.27 (s, 3H), 4.16 (q, 2H). 

C/D about 2:1. MS (CI, NH3) m/e: 159 (M+H+) and 176 (M+NH4+). 

1-MeO-cyclohexene, two isomers were formed. ^H-NMR (CDCI3), 6 ppm C: 1.27 

(t, 3H), 0.8-2.2 (m, 9H), 2.21 (m, IH), 3.24 (s, 3H), 4.10 (q, 2H). D: 1.27 (t, 3H), 1.2-2.2 

(m, lOH), 3.28 (s, 3H), 4.14 (q, 2H). C/D about 2:1. MS (CI, NH3) m/e: 199 (M+H+) 

and 216 (M+NH4+). 
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Appendix. Derivation of the kinetic expression for Scheme 3. Let A = 

[Azine] and M = [Olefin (mostly maleate)], a = [EDA]Q, and K = k2/k3. The ratio of 

the rates at which the azine and the maleate are formed is 

dA koE _ , _, r-> = —^ = KE = K{a - 2 A - 2M} 
dM k3 

(A-1.1) 

This is a first-order differential equation that can be solved by multiplying each 

side by the integrating factor, exp(2KM); integration between the limits 0 and oo 

then gives: 

A.^e^'^" + (A-1.2) 

Substitution of and rearrangement affords 

K \  '  K  

2K(~A„) 
exp - 1  (A-1.3) 

From this we find 

A^ = aK-ln(aK + l) 

2K 
(A-1.4) 

which is the form used to fit A^ as a function of a (= [EDAJQ), as shown in Figure 

1.1. (Page 9) 
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CHAPTER II. ORGANIC REACTIONS CATALYZED BY METHYLRHENIUM 

TRIOXIDE: DEHYDRATION, AMINATION AND 

DISFROPORTIONATION OF ALCOHOLS 

A paper accepted by the Journal of Organic Chemistry 

Zuolin Zhu and James H. Espenson 

Abstract 

Methylrhenium trioxide is the first transition metal complex in trace 

quantity to catalyze the direct formation of ethers from alcohols. The reactions are 

independent of the solvents used: benzene, toluene, dichloromethane, chloroform, 

acetone, and even the alcohols themselves. Aromatic alcohols gave better yields 

than aliphatic. Reactions between two different alcohols could also be used to 

prepare unsymmetric ethers, the best yields being obtained when one of the 

alcohols is aromatic. MTO also catalyzes the dehydration of alcohols to form olefins 

at room temperature, aromatic alcohols proceeding in better yield. When primary 

(secondary) amines were used as the limiting reagent, direct amination of alcohols, 

catalyzed by MTO gave good yields of the expected secondary (tertiary) amines at 

room temperature. Disproportionation of alcohols to alkanes and carbonyl 

compoimds was also observed for aromatic alcohols in the presence of MTO. Based 

on the results of this investigation and a comparison with the interaction between 

MTO and water, a concerted process and a mechanism involving carbocation 

intermediates can be proposed. 
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Introduction 

Methylrhenium trioxide (CH3Re03 or MTO) catalyzes the epoxidation^ and 

metathesis^ of olefins, aldehyde olefination,^ oxygen transfer,^ as well as the 

transfer of carbene and nitrene groups from diazoalkanes and organic azides, 

respectively.^ Many MTOcatalyzed oxidations of hydrogen peroxide have been 

reported, including the oxidations of alkenes,^'^'^ cobalt thiolates,® organic svilfides,^ 

anilines,^® alkynes,^^ and phosphines.^^ We note this series of results, not because 

hydrogen peroxide is in any way involved with the transformations of alcohols 

described in this paper, but because the precursors to the rhenium peroxide 

intermediates from MTO and H2O2 can reasonably be used as models for them. 

The dehydration of alcohols provides an important means of preparing 

ethers. The Williamson ether synthesis^^, one of the most widely used procedures, 

calls for the initial conversion of alcohols to halides or tosylates. Other synthetic 

methods have been reported, but they are not without limitations.^^^^ The method 

developed in this work is a direct one. 

Another important transformation of alcohols is an elimination reaction to 

yield olefins. Known methods include heterogeneous and homogeneous reactions 

w i t h  a  s t o i c h i o m e t r i c  a m o u n t  o f  d e h y d r a t i n g  a g e n t ,  s u c h  a s  a n h y d r o u s  c o p p e r ( n )  

sulfate,^^ copper(II) sulfate on silica gel,^° ferric chloride on silica gel,^^ 

SOCl2/NEt3,^ TsOH/PhH,23 BF3/OEt2,^^ Ph3P/CCl4/NEt3,25 or Ph3PBiBr2/l2.^^ 

The method reported here, which uses MTO as a catalyst for the dehydration of 

alcohols at room temperature in dry benzene, is more convenient. 

Anunes are of considerable practical importance, finding use as antioxidants 

in fuel oils, rubber stabilizers, medidnal drugs, detergents and herbiddes.^^ 
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Generally^ the alcohol used to form an amine must first be converted to a halide. 

The direct methods so far reported for the catalytic amination of alcohols require 

co-catalysts, such as these: CUO/Y-AI2O3/® Al(OBu*)3/Raney-Ni/^ 

Cu0/Cr203/Na20/Si02/H20,27 RuCl2(PPh3)2/Ph3P,30 and Ph3P+NMeC6H4 I" 

/Bu"NHMe/DMF.^^ We have developed a simpler procedure in v^^hich MTO is the 

sole catalyst. 

Disproportionation of alcohols requires hydride transfer, and is usually done 

with AI2O3 at >300 or over HY-zeoUte in refluxiag carbon tetrachloride.^^ 

We have been able to cause disproportionation to occur at room temperature in 

benzene with a catalytic amoimt of MTO. 

The shortcoming of the MTO procedures, however, is that the various 

transformations of alcohols take place concurrently and competitively, controlled 

largely by the structure of the alcohol. This aspect of the chemistry will be evident 

from the results obtained. 

Results 

Formation of ethers. Primary aliphatic alcohols in benzene gave low yields 

after two days; n-C^H^OH, -7%; n-C^Hi^OH, -8%; n-C^H;j30H, -8%. Further time 

did not increase the yield, as the process is limited by the buildup of water in the 

system, according to this equation: 

2 RCH2OH ) RCH2OCH2R + H2O (2.1) 

The situation might be improved by employing a dehydrating agent, as it was in 

olefin-forming reaction referred to in the next section, but that prospect was not 

explored here. 
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Table 2.1. Yields ^ of symmetric ethers and of other products formed by alcohol 

dehydration catalyzed by methylrheniiim trioxide. 

R^R^CHOH, Conv., Yield of Other products 

r1 = R2 = % Ether^ % 

Ph H 36 30 -3% PhCHO, -3% PhMe 

Ph Me 86 80^ -2% PhC(0)Me, -2% PhEt 

Ph Et 89 79b ~3%PhC(0)Et, -3% PhCHjEt 

Ph Ph 100 100 

4-MeC6H4 Ph 100 90 -5% 4-MeC6H4C(OH)Ph 

-5% 4-MeC6H4CH2Ph 

4-CIC6H4 4-CIC6H4 10 10 

4-MeC6H4 H 42 34 -4% 4-MeC6H4CHO 

-4% 4-MeC6H4CH3 

4-MeOC6H4 H 48 36 -6% 4-MeOC6H4CHO 

-6% 4-MeCX:6H4CH3 

1-Naphthyl H ~4 -2% disproportionation 

2-NaphthyI H ~4 -2% disproportionation 

W-C4Hg H ~7 

"•^5^11 H ~8 

"•^6^13 H ~8 

® Yields of the ethers were based on the alcohols; ̂  Two isomers, in a 1:1 ratio. 



www.manaraa.com

54 

Aromatic alcohols, especially secondary ones, gave higher conversions and 

greater yields of ethers. The addition of MTO to solutions of such alcohols in 

benzene gave rise to a yellow color; the nature of this intermediate will be 

considered subsequently. For alcohols of the general formula PhCH(OH)R, the 

conversion increased with the size of the group R, thus: R = H, 36%; Me, 86%; Et, 

89%; Ph, 100%. If the aryl group has an electron withdrawing group attached, such 

as 4-NO2, 4-Br, or 4-Cl, then no ether was formed, and the starting material 

remained unchanged. Although (4-ClCgH4)2CHOH has two electron withdrawing 

groups, it was converted to the ether in 10% yield with MTO in benzene. On the 

other hand, electron-donating groups improved the reaction only to a mild extent: 

for 4-XCgH4CH20H, the yields are R = H, 36%; Me,42%; R = MeO, 48%. In these 

cases meso and racemic ethers were produced in nearly equal amounts. Increasing 

the size of the aryl group decreased the conversion; with 1-naphthyl and 2-

naphthyl groups, only 6% conversion was found. Table 2.1 summarizes these data. 

Inhibition by electron-withdrawing substituents reflects a powerful and 

remarkable electronic effect. It is not entirely eliminated with the use of electron-

donating substitutents, as one might suppose, very likely because of the buildup of 

water, as noted previously. 

When low molecular weight primary alcohols were used as the solvent, the 

aromatic alcohols reacted with them in the presence of MTO to form imsyinmetric 

ethers in high yields, 69-95%. With a tertiary alcohol, however, such as tert-

butanol, only 10% of the aromatic alcohol was converted to an unsymmetric ether 

under these conditions, the balance being the ether formed by the self-coupling of 

the aromatic ether. The results are given in Table 2.2. 
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The successhil strategy for unsyinmetric aromatic ethers is based on using 

the more reactive aromatic alcohol at a much lower concentration than the aliphatic 

alcohol. Even then, some of the symmetric ether from the aromatic alcohol was 

formed. If the two alcohols used had similar reactivities, such as PhCH(OH)Me and 

PhCH(OH)Et, then three ethers were formed, (PhCHMe)20, (PhCHEt)20, and the 

unsymmetric ether PhCHMeCKIH(Ph)Me. As it happened, the three were nearly 

equal in yield. In all the other cases, however, the unsymmetric ether was the 

major product. The findings are summarized in Table 2.3. 

Table 2.2. Formation of uns)m\metric ethers by coupling aromatic and 

aliphatic alcohols, catalzyed by MTO 

Aromatic alcohol Alipha'' alcohol Yield, %3 Other product 

Ph2CHOH EtOH 89 (Ph2CH)20,11% 

Ph2CHOH n-C^KyOa 91 (Ph2CH)20,9% 

Ph2CHOH n-C^H^OU 92 (Ph2CH)20,8% 

Ph2CHOH 95 (Ph2CH)20,5% 

PhjCHOH f-MegCOH 10 (Ph2CH)20,90% 

PhCH(OH)CH3 EtOH 69 (PhMeCH)20,31% 

PhCH(OH)CH3 CH2=CHCH20H 85 (PhMeCH)20,15% 

^Yields are based on the limiting amount of the aromatic alcohol, 10 mmol, 

dissolved in 15 mL of the dry aliphatic alcohol to which 0.2 mmol MTO was added. 
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Table 2.3. Yields of unsyininetric ethers from pairs of aromatic alcohols^ 

catalyzed by MTO. 

Alcohol A Alcohol B Ratio, Yield, 

A/B 

OH 

(4-MeOC6H4 )2CH0H 3:1 93 

PhCH(OH)Et (4-MeC)C6H4 )2CH0H 5:1 85 

PhCH(OH)Me (4-MeOC6H4 )2CH0H 10:1 90 

PhCH(OH)Et (4-CIC6H4 )2CH0H 1:15 83 

Ph2CHOH (4-CIC6H4 )2CH0H 1:5 89 

PhCH20H Ph2CHOH 10:1 100 

PhCH(OH)Me Ph2CHOH 10:1 99 

PhCH(OH)Et Ph2CHOH 10:1 96 

PhCH(OH)Me PhCH(OH)Et 1:1 34 

^ Relative to the alcohol taken in limiting amount. 10 mmol of the limiting 

alcohol was used, with 0.2 mmol of MTO in 100 mL dry benzene. 
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Olefins from alcohol dehydration. The process in eq 2.2 was observed for 

the aliphatic alcohols, but the yields were quite low. With aromatic alcohols, 

however, the olefin yields were satisfactory, although accompanying amounts of 

ether and disproportionation products were formed. The data are given in Table 

2.4. 

OH 
2 cat. MTO , r2 ^ /x r2 

p1 \/ 
(2) 

Some polymer formation, also MTO-catalyzed, accompanied these reactions. 

A solution of 0.2 mmol MTO in 25 mL of the alcohol was sealed in a 30-mL glass 

vial for one month, at which time 11% of the alcohol had ben converted to the 

polystyrene. Although attempts to synthesize the ether from 2,3-dimethyl-l-

phenyl-l-propanol failed, an olefin was obtained after dehydration and 

rearrangement: 

OH 
cat. MTO 

(2.3) 

The tertiary aromatic alcohol, l,2-diphenyl-2-propanol, yielded two olefins, Z- and 

E-methylstilbenes, in a 1:5 ratio: 

OH Pf, 

Ph ^Ph Ph Ph Ph (2.4) 

By way of comparison, dehydration with sulfuric acid, which occurs through a 

pure E| mechanism, gave a Z;E ratio of 1:18.^^ 
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Table 2.4. MTO-catalyzed dehydration of alcohols to form olefins. 

Part A. Reactions with the alcohol as the solvent^ 

Alcohol Product Turnovers^ 

3-octanol 3-octene 40 

1-dodecanol 1-dodecene 43 

cyclo-octanol cyclo-octene 76 

C-C6H,3CH20H methylenecyclohexane 12 

PhCH(OH)Me PhCH=CH2 100 

PhCH(OH)Et PhCH=CHMe 108 

2-methyl-2-hexanol Pr"CH=CMe2, Bu"CMe=CH2 66 

Part B; Reactions in benzene'^ 

Alcohol Product Yield, %'i 

PhCH(OH)Bu' PhCMe=CMe2 11 

PhCMe20H (Ph,Me)C=CH2 46 
OH 00 71 

^OH 
89 

OH 

qc5 Cx> 64 

PhCH(OH)CHMe2 PhCH=CMe2 33 

^ MTO (0.2 mmol) was dissolved in 15 mL alcohol, and allowed to stand for three 

days. ^ Turnovers = mol of product/mol of catalyst after three days. ^ The alcohol 
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(20 mmol) and MTO (0.2 mmol) were dissolved in 100 mL dry benzene and 

allowed to stand for three days. Isolated yield. 

Amination of aromatic alcohols. Secondary amines were obtained 

from primary aromatic alcohols and aliphatic or aromatic amines as in eq 2.5. These 

preparations were carried out by using the alcohol in excess in dry benzene. 

ArCH(OH)R + R' NH2 ) ArCHRNHR' +H2O (2.5) 

Table 2.5. Yields of secondary amines from MTO-catalyzed 

aminations of alcohols^ eq 2.5. 

Alcohol Amine Yield, Other products 

PhjCHOH PhNH2 91 (26)b (Ph2CH)20 

0̂  PhNH2 96 disproportionation 

OH 

(MeOC6H4)CHOH PhNH2 >95 disproportionation 

(MeC6H4)PhCHOH PhNH2 >95 iMeC6H4CHOPh 

(MeOC6H4)CHOH 94 disproportionation 

PhjCHOH n-C6H^3NH2 92 (Ph2CH)20 

^ Based on the an\ine in a reaction of 1 mmol amine and 3 mmol alcohol in 20 mL 

dry benzene to which 0.2 mm.ol MTO was added. ^ When 1 mmol amine and 3 

mmol berizhydrol were used. 
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The yields (based on the limiting amines) were satisfactory, although considerable 

quantities of the ethers were also obtained. When the alcohol and amine were taken 

in equal quantity, however, the yields of secondary amine were considerably 

reduced. The data are summarized in Table 2.5. 

Disproportionation of aromatic alcohols. Disproportionation of aromatic 

alcohols catalyzed by MTO, was observed for all the primary and secondary 

alcohols, except benzhydrol and those alcohols lacking an electron withdrawing 

group. These studies were carried out with 10 nrunol alcohol and 0.2 mmol MTO in 

100 mL dry benzene. 4,4'-Dimethoxybenzhydrol and 9-hydroxyxanthene undergo 

disproportionation only, eq 6; no ether was formed. 

4-Methoxybenzhydrol gave both disproportionation (60% of the starting 

alcohol) and ether formation (40%). Mono-aryl alcohols, ATCH2OH, underwent 

disproportionation to a much smaller extent: Ar = Ph, 6%; 4-MeCgH4, 8%; 4-

MeOCgH4, 12%; 1-Naphthyl, 2%; 2-Naphthyl, 2%. Aryl,alkyl alcohols gave these 

percentages of disproportionation: PhCH(OH)Me, 4%; PhCH(OH)Et, 6%; 1,2,3,4-

tetramethyl-l-naphthol, 11%. 

Disproportionation was also observed between two different alcohols, 9-

hydroxyxanthene and excess PhCH(OH)Et, which yielded only one set of products 

when the reaction was carried out in dry benzene, eq 2.7. No mixed ether was 

formed. 

Ar^Ar^CHOH cat. MTO ^ Ar^Ar^C = O + Ar^Ar^CH2 (2.6) 

+ PhCH(OH)Et 
cat. MTO 

+ PhC(0)Et 

OH (2.7) 
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It should also be noted that no EPR signal was observed during the course of 

the disproportionation of 4,4'-dimethoxy-benzhydrol, even when the spectrum was 

recorded at 110 K in frozen C^D^. 

Discussion 

The intermediates characterized and inferred during (a) the exchange of 

oxygen atones between water and MTO and (b) the formation of the rhenium 

peroxides CH3Re(0)2(77^-02)/ A, and CH3Re(0)(7]2-02)2(H20), B, may be 

pertinent to the present work. Intermediate 1 has been characterized as a precursor 

to A, and it thus seems highly likely that intermediate 2 serves as the vehicle for 

oxygen exchange between MTO and water. In both cases, nucleophilic attack by 

H2O2 or H2O on the highly electropositive Re(Vn) center, as shown in 3, will 

generate the intermediates 1 and 2. 

o  0 0  

-Re ^0  p-H(OH) 

H3C Q j-j H3C Q H3C Q H 

1 2 3 

From these comparisons, and since the rhenixam diperoxide B is yellow, like 

the peroxorhenium complex, it is logical to infer that the reaction between MTO 

and aromatic alcohols proceeds through similar intermediates, with a single 

alcohol, 5, and possibly with two, 6. The second of these is less certain, since ethers 

could result instead from the attack of a second alcohol on 5. 
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0 0-" O 

ROH \ 

R 
-HgO 

»-

R 
O 

R 6 
5 

ROH 
R-O-R + MTO (2.8) 

Attempts to isolate 5 and 6 were not successful; this is not unduly 

discouraging, however, since the OH analogues have not been directly seen. As an 

independent precedent, we note the condensation reaction between MTO and 1,2-

dihydroxybenzene.^'' 

Certain Lewis acids, such a zinc chloride,^® catalyze the formation of ethers 

from alcohols, these are really stoichiometric reactions that are critically dependent 

on the solvent; the zinc chloride reaction, for example, is successful only in 

dichlorethane. MTO appears to be the first transition metal complex that leads to 

the direct formation of ethers from alcohols when used in catalytic amounts; this 

reaction can be carried out in benzene, toluene, dichloromethane, chloroform, 

acetone, and in the alcohols themselves. 

Our findings that (a) no reaction occured with alcohols containing an 

electron-withdrawing group at the para position suchd as NO2, Br, and CI, (b) an 

olefin was formed from 2,2-dimethyl-l-phenyl-l-propanol, and (c) alcohols 

R 

CHaReOa + 

(2.9) 
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underwent disproportionation catalyzed by MTO lead us to suggest that these 

reaction occur through a carbocation intermediate 7. 

Two possible mechanisms can be suggested based on the results obtained. 

One of these is a concerted process. In it, the formation of the dialkoxide 6 is the 

first step, and this yields the ether, as in eq 2.10: 

This mechanism also explains why the smaller primary alcohols can form ethers, 

whereas the larger ones carmot: 1-dodecanol and 1-undecanol yield only the alkene 

by dehydration. This is due to the limited space in the coordination sphere of MTO. 

The dehydration reaction of l,2-diphenyl-2-propanol should give a Z:E ratio of 

about 1:1 if the reaction is fully concerted. The observed ratio of Z:E::1:5 suggests 

that both concerted and carbonium ion pathways may contribute. 

As far as the carbonium ion mechanism is concerned, formation of 6 is not 

necessary. After the first alcohol has been added, giving 5, a carbocation 

intermediate 7 can be formed. Indeed, the ethers and the amines are formed by the 

nucleophilic addition of a second alcohol or of the amine to 5. 

6 MTO + R-O-R (2.10) 

O 
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Those alcohols that can generate a stable carbocation allow a second alcohol 

to react with it; this jdelds a ketone and and an alkane through disproportionation. 

Alternatively, the cation can be intercepted by the alcohol or by the amine. The 

results we have obtained suggest that the concerted process of eq 10 is the 

dominant one for the primary alcohols, whereas a carbocation intermediate 

provides the major pathway for the aromatic alcohols. 

Eeperimental section 

Materials. The chemicals were purchased commercially, and their purity 

was verified by GC-MS. The samples of methylrhenium trioxide used in this 

research were also purchased (Aldrich). The solvents were purified by standard 

procedures.^® 

Symmetric ethers. This is the general procedure: the alcohol (40 mmol) and 

MTO (0.2 mmol) were dissolved in 100 mL of dry benzene, and the solution 

allowed to stand at room temperature for two days. Much of the solvent was 

removed by rotary evaporation. Separation and purification of the ether was 

realized by vacuum distillation, recrystalization, or column chromatography using 

hexane/ethyl acetate (10:1 ~ 1:1) as the eluant. The products were identified by 

their NMR spectra. Tables S-2.1 and S-2.2, in comparison with literature data.^®-^^ 

Unsymmetric ethers. The alcohol (10 mmol) and MTO (0.2 mmol) were 

dissolved in 15 mL of the dry aliphatic alcohol, and allowed to stand at room 

temperature for two days. The crude products were obtained by removing the 

excess aliphatic alcohol and the symmetric ether using rotary evaporation. The 

pure ether was isolated by column chromatography using hexane/ethyl acetate 
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(10:1 ~ 1:1) as the eluant. When a pair of unsymmetric aromatic alcohols was used, 

the procedure was the same except that the two alcohols were used in 20 mL of dry 

benzene, the more reactive alcohol tjeing taken in linuting quantity, 10 mmol, along 

with 0.2 mmol MTO. 

Amination leactons. The alcohol (3 nunol), amine (1 mmol) and MTO (0.2 

mmol) were dissolved in 20 mL dry benzene and allowed to stand for two days. 

The balance of the procedure was the same. 

Olefin formation. The catalyst (0.2 mmol) was dissolved in 15 mL of the dry 

alcohol, and allowed to stand for three days. The olefins were isolated by 

distillation. For some of the aromatic alcohols, dry benzene with 20 mmol alcohol 

and 0.2 mmol MTO was used. 

Identifications. The products were identified by their NMR spectra. Tables 

S-2.1 and S-2.2, in comparison with literature data.^®-^^ 

Acknowledgment. This research was supported by the U. S. Department of 

Energy, Office of Basic Energy Sciences, Division of Chemical Sciences under 

contract W-7405-Eng-82. 



www.manaraa.com

66 

Supporting Information 

Organic Reactions Catalyzed by Methylrhenium Trioxide: Dehydration, Amination 

and Disproportionation of Alcohols 

Zuolin Zhu and James H. Espenson 

Table S-2.1. NMR data for the symmetric ethers formed from reactions of alcohols 

catalyzed by MTO. 

Table S-2.2. NMR data for the unsymmetric ethers formed from reactions of 

alcohols catalyzed by MTO: one aromatic and one aliphatic alcohol 

Table S-2,3. NMR data for the unsymmetric ethers formed from reactions of 

alcohols catalyzed by MTO; two aromatic alcohols 

Table S-2.4. NMR data for the secondary amines formed from reactions of alcohols 

and primary amines, catalyzed by MTO 



www.manaraa.com

Table S-2.1. NMR data for the symmetric ethers formed from reactions of 

alcohols catalyzed by MTO. 

Alcohol ^H-NMR, 5 "C-NMR, 5 

PhCHjOH A 7.34 (m, lOH), 4.53 (s, 4H) 138.24,128.37,127.74,127.59, 
72.05 

PhCH(OH)Me A 7.26 (m, lOH), 7.24 (m, lOH) 4.48 
(q, 2H), 4.21 (q, 2H), 1.44 (d, 
6H), 1.36 (d, 6H) 

144.11,128.20,127.10,126.17, 
74.36, 22.99,144.20,128.42, 
127.34,126.26, 74.57,24.69. 

PhCH(OH)Et A 7.24 (m, lOH), 7.26 (m, lOH) 
3.94 (t, 2H), 4.28 (t, 2H), 1.55 (m, 
4H), 1.81 (m, 4H), 0.785 (t, 6H), 
0.88 (t,6H). 

142.87,127.90,127.15,126.77, 
79.95, 29.71,9.73,142.96, 
128.46,127.34,126.89,80.54, 
31.32,10.44. 

PhCH(OH)Ph B 7.28 (m, 20H), 5.39(s, 2H) 142.19,128.37,127.41,127.24, 
79.95. 

4-MeO-
PhCHiOH 

7.21-6.94 (m, 8H), 4.28 (s, 4H), 
3.54 (s,6H). 

159.11,131.12,128.54,113.79, 
68.63,55.32. 

4-Me-
PhCH20H 

7.15-7.25 (m, 8H), 
4.50 (s,4H), 2.35 (s, 6H) 

137.26,135.25,129.05,127.89, 
71.75, 21.16. 

2-Naphth-
CH2OH 

7.48-7.83 (m, 14H), 
4.77 (s,4H) 

138.30,133.38,132.96,128.36, 
127.90,127.73,126.21,125.92, 
125.45,125.17, 72.22. 

1-Naphth-
CHoOH 

7.42-8.13 (m, 14H), 
4.83 (s, 4H). 

131.18,128.29,127.84,127.67, 
126.76,125.75,125.22,125.12, 
124.84,124.18,70.64. 

4-Me-Ph- C 
CH(OH)Ph 

7.14-7.34 (m, 18 H), 5.35 (s, 2H), 
2.33 (s, 6H). 
7.15-7.36 (m, 18H), 5.36 (s, 2H), 
2.34 (s, 6H). 

142.44,139.20,136.99,129.04, 
128.28,127.18,127.16, 79.67, 
21.12. 
142.55,139.32,137.03,129.06, 
128.31,127.21,127.19,79.68, 
21.12. 
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Table S-2.1 
(continued) 
4,4'-Cl2C6H3-
CH(OH)Ph 

C 7.29 (m, 16H), 5.28 (s, 2H). 140.79,133.73,128.83,128.38, 
78.98. 

«-Bu-OH A 3.39 (t, 4H), 1.56 (m, 4H), 1.37 
(m, 4H), 0.92 (t, 6H). 

70.67, 31.94,19.51,14.01. 

n-Pentanol A 3.38 (t, 4H), 1.24-1.61 (m, 12H), 
0.91 (t, 6H). 

71.04, 29.43, 28.54, 
22.61,14.02. 

n-Hexanol A 3.39 (t, 4H), 1.21-1.60 (m, 16H), 
0.89 (t, 6H). 

71.12,31.87, 29.79, 
26.00, 22.45,14.00. 

A: Separation was done by vaccum distillation, B. Isolation was done by 

recrystalization from benzene, water and ethanol. The product structure was 

identified using X-ray crystal analysis. C. Isolation was done by column 

chromatography using 10 :1 to 1:1 ratio of hexane to ethyl acetate as eluant. 
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Table S-2.2. NMR data for the unsyininetric ethers formed from reactions of 

alcohols catalyzed by MTO; one aromatic and one aliphatic alcohol 

Aromatic Other ^H-NMR, 5 "C-NMR, 5 
Alcohol Alcohol 

PhCH(OH)Ph ethanol C 7.22 (m, lOH), 5.34 (s, IH), 

3.50 (q, 2H), 1.36 (t, 3H) 

142.47,127.27, 
126.97,126.40, 
83.51,64.45,15.26 

PhCH(OH)Ph n-Pr-OH C 7.22 (m, lOH), 5.33 (s, IH), 
3.40 (t, 2H), 1.64 (m, 2H), 
0.94 (t, 3H). 

142.63,128.30, 
127.28,126.94, 
83.52, 70.81, 23.09, 
10.76 

PhCH(OH)Ph n-Bu-OH c 7.20 (m, lOH), 5.33 (s, IH), 
3.43 (t, 2H), 1.36-1.67 (m, 
4H), 0.90 (t, 3H) 

142.63,128.30, 
127.27,126.93, 
83.55,68.91,31.97, 
19.45,13.93 

PhCH(OH)Ph n-Pentanol c 7.21 (m, lOH), 5.32 (s, IH), 
3.41 (t, 2H), 1.26-1.61 (m, 
6H), 0.90 (t^H) 

142.63,128.30, 
127.26,126.93, 
83.54, 69.62,29.21, 
28.49,22.37,13.99 

PhCH(OH)Ph f-Bu-OH c 7.20 (m, lOH), 5.33 (s, IH), 
1.22 (s, 9H) 

142.24,128.48, 
127.31,126.52, 
83.67,72.44,31.30 

PhCH(OH)Me ethanol 

PhCH(OH)Me Allyl 
alcohol 

A 

A 

7.24 (m, 5H), 4.40 (q, IH), 
3.35 (q,2H),1.41 (d,3H), 
1.18 (t,3H) 

7.25 (m,5H), 6.11 (m. IH), 
5.20 (m, 2H), 4.41 (q, IH), 
3.89 (d, 2H), 1.44 (d, 3H). 

144.12,128.23, 
127.10,126.18, 
79.33,64.51, 23.01, 
15.12 
144.11.128.20, 
127.08,126.17, 
137.85.115.21, 
82.08,70.24, 24.33. 
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Table S-2.3. NMR data for the unsymmetric ethers formed from reactioirs of 

alcohols catalyzed by MTO: two aromatic alcohols 

Aromatic 
Alcohol 

Other Alcohol ^H-NMR, 8 5 

9-Hydroxy-
fluorene 

(3x)  

4,4'(MeCX:6H3)2 C 
CHOH 

(1 X) 

7.61-6.80 (m, 16H), 
5.70 (s, IH), 5.59 
(s, IH), 3.75 (s, 6H) 

158.83,143.95,140.55, 
135.06,128.69,128.31, 
127.29,125.68,119.73, 
113.60, 81.23, 79.40, 
55.21 

PhCH(OH)Me 4,4'(MeOC6H3)2 C 
(10 x) CHOH 

(1 X) 

PhCH(OH)Et 4,4'(MeOC6H3)2 C 
(5 X) CHOH 

(1 X) 

PhCH(OH)Et 4,4'(C1C6H3)2 
(Ix) CHOH 

(15 X) 

PhCH(OH)Ph 4,4'(C1C6H3)2 C 
(1 X) CHOH 

(5x) 

7.22-6.76 (m, 13H), 
5.16 (s, IH), 4.41 
(q,lH),3.77 (s, 
3H), 3.71 (s, 3H), 
1.38 (d, 3H) 

7.23-6.76 (m, 13H), 
5.13 (s, IH), 4.15 (t, 
IH), 3.79 (s, 3H), 
3.72 (s, 3H), 1.65 
(m, 2H), 0.86 (t, 
3H) 

7.25-7.13 (m, 13H), 
5.14 (s, 1H),4.12( 
t, IH), 1.69 (m, 
2H),0.77 (t, 3H) 

7.38-7.23 (m, 18H), 
5.34 (s, IH), 5.33 
(s, IH) 

158.89 (158.53), 143.79, 
135.35 (134.14), 128.11, 
129.95, (128.96), 127.33, 
113.79 (113.47), 126.48, 
79.09,74.63,55.14 
(55.12), 24.18 

158.90 (158.42), 142.79, 
134.10 (132.84), 128.98, 
129.67 (128.86), 128.17, 
113.78, (113.73), 125.25, 
80.00,78.75,55.15, 
(55.14), 31.11,10.36 

141.00,139.88,132.82, 
128.94,128.70,128.48, 
127.64,126.61, 80.51, 
78.27,30.99,10.24 

143.73,141.67,140.22, 
133.45,128.83,128.83, 
128.69,127.64,127.11, 
80.28, 78.70 
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Table S-2.3 
(continued) 
PhCH20H 

(10 X) 

PhCH(OH)Ph 
(1 x) 

PhCH(OH)Me PhCH(OH)Ph 
(10 X) (1 X) 

PhCH(OH)Et 
(lOx) 

PhCH(OH)Ph 
(1 X) 

PhCH(OH)Me PhCH(OH)Et 
(1 X) (1 X) 

7.38-7.11 (m, 15H), 141.93,138.18,128.92, 
5.41 (s, IH), 128.30,127.63,127.45, 
4.50 (s, 2H) 127.03,125.19, 82.32, 

70.35 

7.38-7.17 (m, 15H), 143.60,142.73,141.93, 
5.30 (s, IH), 4.56 128.10,127.50,127.04, 
(q, IH), 1.41 (d, 126.88,126.48,79.94, 
3H) 74.90,24.21 

7.33-7.15 (m, 15H), 
5.22 (s, 1H),4.18 (t, 
IH), 1.68 (m, 2H), 
0.87 (t, 3H) 

7.19 (m, lOH), 
[7.24 (m, lOH)] 
4.43 (q, IH), [4.52 
(q,lH)],3.96 (t, 
IH), [4.33 (t, IH)] 
1.69 (m, 2H), [1.82 
(m, 2H)], 1.35 (d, 
3H), [1.42 (d, 3H)] 
0.65 (t, 3H), [0.82 
(t, 3H)] 

143.02.142.31.141.89, 
130.98,128.47,127.50, 
127.43.125.74.80.21, 
79.66, 31.12,10.31 

144.37.144.04.142.90, 
128.41,128.11,127.14, 
126.80,126.22,80.50, 
74.47,31.37, 24.62, 
12.40 
144.15,143.98,142.84, 
128.22,128.07,126.89, 
126.54.125.80.80.22, 
70.22, 30.47, 22.21, 
10.10 
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Table S-2.4. NMR data for the secondary amines formed from reactions of alcohols 

and primary amines, catalyzed by MTO 

Alcohol Amine ^H-NMR, 6 i\:-NMR, 5 

PhCH(OH)Ph AniUne 7.33-6.58 (m, 15H), 146.07,143.78,129.17, 
5.71 (s, IH), 3.11 128.36,127.40,126.47, 
(s,lH) 116.45,115.18,76.02 

9-HO-
xanthene 

Aniline 

4,4'-di-MeO- Aniline 
benzhydrol 

7.26-6.59 (m, 13H), 151.02,144.90,136.79, 
5.15 (s, IH), 3.29 129.68,129.61,127.61, 
(s, IH) 124.96,123.08,116.37, 

115.34,43.43 

7.35-6.51 (m, 13H), 158.68,147.40,135.36, 
5.40 (s, IH), 3.76 129.23,128.43,117.43, 
(s, 6H), 2.50 (s,lH). 113.75,113.40,61.64, 

55.21 

4-Me-
Benzhydrol 

Aniline 7.35-6.65 (m, 14H), 
4.60 is, IH), 2.54 
(s, IH), 2.34 (s3H) 

146.21,143.87,140.88, 
137.89,137.29,137.24, 
129.23,129.17,128.29, 
127.06,118.60,115.14, 
61.12,21.09 

4,4'-di-MeO-
benzhydrol Hexylamine 

7.77-6.92 (m, 8H), 
5.44 (s, IH), 3.85 
(s, 6H), 2.47 (t, 
2H), 1.49-1.17 (m, 
9H), 0.88 (t, 3H) 

162.76,132.17,128.24, 
113.37,75.02,55.34, 
41.72,33.11,31.54, 
26.41, 22.53,13.97. 

PhCH(OH)Ph n-
Hexylamine 

7.30 (m, lOH), 5.76 144.07,128.22,127.35, 
(s, IH), 2.55 (t, 126.51,75.97,41.82, 
2H), 1.33(m, 9H), 33.31,31.62, 26.48, 
0.88 (t, 3H) 22.61,14.04 
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CHAPTER III 

METHYLRHENIUM TRIOXIDE AS CATALYST FOR OXIDATION WITH 

MOLECULAR OXYGEN AND OXYGEN TRANSFER 

A paper in press in the Journal of Molecular Catalysis 

Zuolin Zhu and Jannes H. Espenson 

Abstract 

Methylrhenium trioxide (MTO) was found to be a good catalyst for the 

oxidation of tertiary phosphines by molecular oxygen at room temperature. 

Evidence is given that an intermediate Re(V) compound - CH3Re02, or the adduct 

CH3Re020=PPh3 - is involved. The deoxygenation of epoxides, sulfoxides, N-

oxides, triphenylarsine oxide and triphenylstibine oxide at room temperature was 

also catalyzed by MTO, with triphenylphosphine as the oxygen acceptor. A 

plausible reaction mechanism involves phosphine attack at a compound formed 

between MTO and the epoxide or other oxygen-donor compoimd. 

Key words-, catalysis, phosphines, oxidation, rhenium, oxygen, oxides 

Introduction 

Transition metal-oxo complexes are of great relevance to many catalytic 

oxidation processes and to oxygen atom transfer between substrates [1]. 
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Methylrhenium trioxide (CH3Re03, abbreviated as MTO), is a stable compound 

prepared from dirhenium heptoxide and tetramethyltin [2]. It acts as an efficient 

homogeneous oxidation catalyst for hydrogen peroxide in both aqueous and 

organic solvents. With hydrogen peroxide as the oxidant, MTO catalyzes olefin 

epoxidations [3,4], conversion of thiolatocobalt to sulfenatocobalt [5], oxidations of 

organic sulfides [6], phosphines, triphenylarsine, and triphenylstibine [7], and 

tertiary amines to the corresponding oxides [8], and for the conversion of aniline to 

nitrosobenzene. [8] With S representing such a substrate, all of these reactions can 

be abbreviated as: 

cat. MTO 
S + H2O2 • S=0 + H2O (31) 

Since both the activation of molecular oxygen and oxygen transfer are 

important industrially and biologically, the catalytic properties of many transition 

metal 0x0 complexes have been studied, including ruthenium(V) [9a], 

molybdenum(V) [9b], ruthenium(IV) [10], and rhenium(V) [11]. These 0x0 

complexes and the hexanuclear carbonyl cluster Rhg(CO)|g [12] are capable of 

activating molecular oxygen or transferring an oxygen atom. This type of catalytic 

process for methylrhenium trioxide remains imexplored. 

We have found that MTO catalyzes the oxidation of tertiary phosphines by 

molecular oxygen. Also, we have examined the transfer of the oxygen atom from 

epoxides, sulfoxides, aromatic tertiary amine oxides, triphenylarsine oxide, and 

triphenylstibine oxide. In each case the oxygen acceptor was triphenylphosphine. 
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Results 

Catalyzed phosphine oxidation with molecular oxygen. The oxidation of 

tertiary phosphines was conducted in benzene at room temperature. Two different 

methods were used. First the solutions containing MTO and the triarylphosphines 

were opened to air with stirring. One day later, substantial yields of phosphine 

oxides were recorded. The yields differ with the substrate, as given in Table 3.1. 

TABLE 3.1. Product yields from the oxidation of triarylphosphines with air, 

catalyzed by MTO ^ 

(4-R-C6H4)3P, R = % Yield 

24 h 48 h 

H 62 >97 

CH3 71 100 

CI 53 > 96 

CH3O 80 100 

^ In benzene solution at room temperature, with phosphine: MTO -10:1. 

After two days, however, all of the phosphines had been converted to their oxides 

in yields of > 95%. Second, pure oxygen was used instead of air. In that case the 

reactions reached completion within six hours or less, with yields of > 95%. A 

independent reaction was carried out in which MTO was not used: triphenyl 
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phosphine was dissolved in benzene and exposed to air and stirred. After one 

week, triphenyl phosphine oxide was not detected from this reaction. 

The reactions under pure oxygen at rooni temperature were monitored by 

^H-NMR. During the reaction the signal of the phosphine decreased as that of the 

oxide appeared. Without oxygen, only one signal from the rhenium present was 

seen at 5 = 1.212 ppm. This corresponds to rhenium(V), perhaps [CH3Re02 0PPh3] 

or simply [CH3Re02], [13], which will be abbreviated V^. A new peak appeared at 

5 1.237 ppm after the solution was flushed with oxygen. Isolation of the latter 

species is in progress. 

Oxygen transfer reactions. The reactions described in this section were 

catalyzed by MTO. This was confirmed by carrying out controls without MTO; in 

each case, no oxygen transfer reaction was observed even after one week. 

Deoxygenation of epoxides. Treatment of an epoxide with 

triphenylphosphine in the presence of MTO imder Ar at room temperature results 

in the deoxygenation of the epoxide and the formation of an olefin in high yield. 

The reaction preserves the relative stereochemistry about the C-C bond of the 

epoxide. The results are given in Table 3.2, which lists the ep)Oxide taken, the olefin 

obtained, and its yield. 

Oxygen abstraction from epoxides was also monitored by ^H-NMR. Upon 

mixing the epoxide and MTO in benzene at room temperature, the signal 

corresponding to a dialkoxylrhenium complex (or rhenium glycolate) was 

observed. [14] Upon addition of triphenylphosphine, signals corresponding to 

Ph3PO, olefin, and MTO were seen. Crystals were also isolated from the reaction 
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mixture. They had the same ^H-NMR spectrum as the dialkoxylrhenium complex 

in solution. [14] 

Deoxygenation of sulfoxides. Treated analogously in benzene, several 

sulfoxides reacted with triphenylphosphine at room temperature to give the sulfide 

as the only product. The reaction was studied by ^H-NMR at room temperature. A 

1:1 solution of the sulfoxide and MTO showed that the CH3 group of rhenium after 

one hour had shifted downfield about 0.1 ppm. Upon addition of 

triphenylphosphine, the signals corresponding to triphenylphosphine oxide and 

sulfide appeared immediately. After the reaction has finished, MTO is still active. 

This was confirmed by the continuation of the catalytic process when more 

reactants were added. 

Oxygen transfer from tertiary amine oxides. MTO also catalyzes oxygen 

transfer from tertiary amine oxides to triphenylphosphine, forming the amine and 

triphenylphosphine oxide. This reaction also occurs at room temperature under 

argon. The results are shown in Table 3.4. As for the epoxides, this reaction was 

investigated by ^H-NMR, ^^C-NMR and GC-MS for N,N-dimethyl aniline N-oxide; 

see Eq. 3.2. GC-MS was employed in monitoring the reactions and for product 

identification for the other amine oxides. A mixture of MTO and the amine oxide in 

benzene at room temperature also shows a chemical shift about 0.1 ppm downfield 

of the methyl group of MTO which we believe is due to the effect of the substrates 

used. 



www.manaraa.com

81 

Table 3.2. Deoxygenation of epoxides with triphenylphosphine, 

catalyzed by MTO ^ 

Substrate Olefin product % Yield 

Styrene epoxide Styrene 

Cyclohexene epoxide Cyclohexene 

Ox ^ 81 

^ In benzene at room temperature with epoxide: MTO -10:1. 

^ Product yields were calculated from ^H-NMR. 
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Table 3.3.. Deoxygenation of sulfoxides with triphenylphosphine, catalyzed by 

methylrhenium trioxide ^ 

Substrate Sulfide Produced % Yield 

PhS(0)CH=CH2 PhSCH=CH2 73 

Ph2SO Ph2S 66 

PhS(0)Me PhSMe 71 

(PrOsSO (Pr02S 75 

(Bu")2SO (BU«)2S 77 

(?>-CH3C6H4)2S0 (p-CH3C6H4)2S 65 

(;>-C1C6H4)2S0 (p-ClC6H4)2S 59 

^ In benzene at room temperature, with sulfoxide: MTO -10:1. 
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Table 3.4.. Deoxygenation of tertiary amine oxides with triphenylphosphine, 

catalyzed by MTO ^ 

Substrate Amine product % Yield 

O 

O 

'-0-
02N NMe2 

NMe2 

I Me-/~^NMe2 
Me-f VNMea 

--^~^NMe2 NMe2 

I 02NH^-02N-f VNMe2 

78 

81 

74 

70 

65 

77 

^ In benzene at room temperature, with a mole ratio N-oxide: MTO -10:1. 
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+ OPPh. 

^H-NMR 7.925 ppm (m) 7.229 ppm (m) 
. . 7.458 ppm (m) 6.714 ppm (m) 

3 3.844 ppm (s) 2.918 ppm (s) 

^^-NMR 61.467 ppm 40.753 ppm 

of Me/CEXri3 ^2 2) 

Deoxygenations of triphenylarsine oxide and triphenylstibine oxide. 

Unlike the oxygen transfer reactions reported previously, the deoxygenations of 

triphenylarsine oxide and triphenylstibine oxide by Ph3F are very fast when 

catalyzed by MTO. Both reactions were finished within 30 min. at room 

temperature vmder argon; triphenylarsine and triphenylstibine were formed almost 

quantitatively. The identities of these products were confirmed spectroscopically; 

see Eq. 3.3. 

MTO 
PPhj + OEPhj — ^ EPhg + OPPhg 

^H-NMR 7.85 ppm (m) 7.35 ppm (m) E = As 

/CDCI3 pp" 

/ QDg 7.42 ppm E = Sb 
7.06 ppm 

(3.3) 
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In the absence of triphenylphosphine, the ^H-NMR signal of the methyl 

group of MTO shifted from 1.196 ppm to 1.390 (E = As) or 1.410 (E = Sb) after 

addition of excess triphenylarsine oxide or triphenylstibine oxide in benzene. These 

species are stable at room temperature under argon, where there is no change 

within three days. In addition about 2% of the MTO decomposed to methanol; but 

the extent of decomposition did not increase with time in the absence of 

triphenylphosphine. 

Discussion 

The oxidation of phosphines with molecular oxygen. The absence of an 

NMR signal for the methyl group of MTO or other possible oxidants during the 

reactions was noted. The well-known mono-Ti--peroxide, CH3Re(0)2(02) A, and 

the bis-Tj^-peroxide, CH3Re(0)(02)2 B, if present at all, remained undetected. This 

finding suggested a reaction pathway unlike that for catalytic oxidations that use 

hydrogen peroxide as the oxidant. [5, 7, 8, 13] In contrast, the oxidations of 

phosphines with molecular oxygen do not seem to occur by way of A or B formed 

from hydrogen peroxide. (Shortly, however, this statement will be revised so as to 

admit the possibility that A might be involved, but simply present at too low a 

concentration for detection.) From the ^H-NMR data and results in the literature, 

[16] we suggest that this reaction may follow a mechanism that involves an oxygen-

containing intermediate. Scheme I. 

The incorporation into a substrate of an oxygen atom from molecular oxygen 

is important both industrially and biologically. Phosphines act as blood poisons, 

which may arise from the reaction with oxygen in the presence of some 

hemeproteins. [17] The in-depth study of this reaction may offer a ready 

explanation of the toxic effect. 
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Scheme I 

CH, 

I 
^Re— 

o 
O + PPhg 

0=PPh3 

CH3Re02 (VA) 

i 
PPh, 

Ph,P Re PPh, ^2 

2 0=PPh3 

O 

5 = 1.212 ppm 

CH3Re(0)2(PPh3)2(02) 

5 = 1.237 ppm 

Deoxygenation of epoxides. This reaction is important in both synthesis and 

structural determinations. [18-21] It provides a simple (one pot) method that 

proceeds in high yield under mild conditions. This reaction is believed to occur by 

a mechanism that features the participation of a dialkoxylrhenium complex (or 

rhenium glycolate), as given in Scheme II. 

Scheme II 

CH, 
I 

,Re 

R- O 
/ V 

o- \VO 2/ 
o 

•R 

R 

CHo 
Ocriie-O 

• 

CH3 
1 

.Re FO + 
O ^R ^R 

iR 2R 

PPh3 

Ph3P=0 

'R 

R 
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Deoxygenation of sulfoxides and tertiary amine oxides. Oxygen atom 

transfer reactions have received renewed attention in the last few years because of 

their importance in biological systems. [22] A number of methods have so far been 

developed for this purpose. [23,24] Unlike the method given here, the previously-

reported methods need either a long reaction time [25] or a higher temperature [26]. 

By analogy to the mechanism suggested for the deoxygenation of epoxides, the 

deoxygenation of sulfoxides and of N-oxides proceeds by a pathway in which the 

oxides first coordinate to MTO, and then (likely in >1 step) it transfers an oxygen 

atom to triphenylphosphine. This set of reactions is diagrammed in Scheme III. 

Deoxygenation of triphenylarsine and triphenylstibine oxides. These 

reactions appear to follow a mechanism similar to that of the deoxygenation of 

sulfoxides and N-oxides. First, MTO coordinates OAsPh3 or OSbPh3, then PPh3 

reacts with this complex to form AsPh3 or SbPh3. The formation of methanol may 

arise from a very reactive oxidizing species in triphenylarsine oxide through an 

intermediate like "A', referred to previously. 

Scheme III 

. S=0 

o 

CHg 
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Scheme IV 

s=o 

CH3 
I CH, 

I ^ 

AO + S A (Oxygen acceptor) 

These results point to MTO being an effective catalyst for several oxygen 

transfer reactions. The net stoichiometric scheme applicable to all of these reactions 

can be diagrammed as in Scheme IV. 

We would also mention another set of reactions that may account for all of 

the processes reported herein. It entails a rhenium(V) intermediate CH3Re(0)2, 

which we shall abbreviate as V^ (a term arising from the role of this species in 

other reactions that will be reported independently). The actual formula of V^ 

might instead be CH3Re(0)2"0PPh3, a species referred to above. The postulate is 

this: V^ forms first, in a reaction between MTO and PPhg. It partitions between 

alternative reactions, governed by the presence of oxygen or of the substrate-oxide. 

Included is a reaction known from earlier work [7], between the ri^-peroxorhenium 

complex. A, and the phosphine, shown as step (4) in Scheme V, which represents 

an alternative but reasonable picture for the general substrate S=0. At the present 

time, no clear resolution among these alternatives is at hand, although this and 

related chemistry remains an active endeavor. 
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Scheme V 

CH, (" CH <2^ ° 

-PhjPO o' ~'° 

V. 

(3) MTO + S 

PPhs 
/ \ I •- MTO + PhgPO 

These investigations have shown that MTO can act as an effective catalyst 

for a number of deoxygenation and oxygen transfer reactions, given a proper 

oxygen acceptor. Current studies are underway to extend the scope of this reaction. 

Experimental section 

Materials. The triarylphosphines, epoxides, sulfoxides, pyridine-N-oxide, 

and triphenylarsine oxide were purchased. The other N-oxides were obtained from 

our previous study. [8] 2,3-Dimethylbutene epoxide was prepared from 2,3-

dimethyl-2-butene. [27] Triphenylstibine oxide was prepared by oxidizing 

triphenylstibine with hydrogen peroxide, catalyzed by MTO. [7] Methylrhenium 

trioxide was synthesized from dirhenium heptoxide and tetramethyltin in the 

presence of perfluoroglutaric anhydride. [2] Benzene was purified by a standard 

method. [28] 

Oxidation of phosphines. 

Method A. The tertiary phosphine (30 mmol) and MTO (3 mmol) were 

dissolved in 100 mL benzene, and the solution was stirred in air at room 

temperature. The reaction was monitored by TLC, ^H-NMR, and ^^P-NMR; to do 
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residue dissolved in for NMR. After 48 h the solvent was removed under 

vacuum and the residue recrystallized from methanol. 

Method B. The materials in the amoimts described above were dissolved in 

100 mL benzene, then flushed with oxygen at room temperature. The reaction was 

monitored as previously described. After 6 h, the solvent was removed and the 

products identified by MS, ̂ H-NMR, or ^^P-NMR [29-33]. 

Triphenylphosphine oxide. ^H-NMR/CDCls: 6 7.68 ppm (m), 7.43 ppm (m). 

MS (EI): m/e 278, (CI, ammonia); 279 (M+H+) and 296 (M+NH4+). 

(p-Me-Ph)3PO. ^H-NMR/CDCls; 5 7.26 ppm (m), 7.533 ppm (m) and 2.38 

ppm (s). MS (EI) m/e 320, (CI, ammonia), m/e 321 (M+H+) and m/e 338 

(M+NH4+). 

(p-MeO-Ph)3PO. ^H-NMR/CDCls: 6 7.55 ppm (m), 6.97 ppm (m) and 3.84 

ppm (s). MS (EI): m/e 368, (CI, ammonia), m/e 369 (M+H+) and m/e 386 

(M+NH4+). 

(p-Cl-Ph)3PO. lH-NMR/CDCl3;5 7.56 ppm (m), 7.61 ppm (m) and ^^P-

NMR/CDCI329.4 ppm (neat H3PO4 as external reference). MS (EI): m/e 380 (^^Cl), 

382 (37C1); (CI, ammonia) 381 (35C1), 383 (37C1) (M+H+); 398 (35ci), 400 (37C1) 

(M+NH4+). 

General procedixre for deoxygenation of epoxides. The epoxide (30 mmol) 

and MTO (3 mmol) were dissolved in 100 mL benzene. A triphenylphosphine (31 

mmol in 100 mL benzene) was added drop wise over 6 h with stirring under Ar, 

which was continued for another 12 h. The olefins were isolated by distillation 

under reduced pressure. The products were identified spectroscopically. 
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Cydododecene, ^H-NMR/CDCls: 5 1.33 ppm (m), 2.06 ppm (m) 5.38 ppm 

(m). Unsaturated ^^C-NMR/CDCls at 5 130.23 ppm and 131.78 ppm (two isomers 

from cis and trans isomers of the starting epoxide). GC-MS: m/e 166 

(cyclododecene); 278 (OPPha). 

Cyclohexene, ^H-NMR/CDCls; 5 1.61 ppm (m), 1.99 ppm (m) 5.68 ppm (m). 

GC-MS:m/e 82 (cyclohexene); 278 (OPPha). 

frflMs-Stilbene, ^H-NMR/CDCla: 6 7.09 ppm (m), 7.22 ppm (m), 7.32 ppm 

(m), 7.48 ppm (m). GC-MS: m/e 180 (fraws-stilbene); 278 (OPPhs). 

c/s-Stilbene, ^H-NMR/CDCla: 56.58 ppm (m), 7.19 ppm (m). GC-MS: m/e 

180 (cis-stilbene); 278 (OPPhs). 

Styrene, ^H-NMR/CDCls: 5 5.20 ppm (d), 5.71 ppm (d), 6.68 ppm (dd), 7.29 

ppm (m). GC-MS: m/e 104 (styrene); 278 (OPPhs). 

2^-Dimethyl-2-butene, ^H-NMR/CDCls: 6 1.65 ppm (s). GC-MS: m/e 84 

(2,3-dimethyl-2-butene); 278 (OPPhs). 

Deoxygenation of sulfoxides.The general procedure used for the epoxides 

was used. 

PhSMe, ^H-NMR/CDCls: 5 7.23 ppm (m), 7.12 ppm (m) and 2.44 ppm (s). 

l^C-NMR/CDCls of methyl is 15.84 ppm. GC-MS: m/e 124 (PhSMe); 278 (OPPhs) 

Ph2S, iR-NMR/CDCls: 8 7.28 ppm (m). GC-MS: m/e 186 (Ph2S); 278 

(OPPhs). 

PhSCH=CH2, "^H-NMR/CDCls: 6 7.30 ppm (m), 6.54 ppm (dd) and 5.32 

ppm (m). GC-MS: m/e 136 (PhSCH=CH2); 278 (OPPhs). 

(p-Me-Ph)2S, ^H-NMR/CDCls: 5 7.11 ppm (m), 6.88 ppm (m) and 2.25 ppm 

(s). GC-MS: m/e 214 ((p-Me-Ph)2S); 278 (OPPhs). 
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(n-Bu)2S, ^H-NMR/CDCla; 5 2.49 ppm (q), 1.58 ppm (m), 1.40 ppm (m) and 

0.92 ppm (t). GC-MS: m/e 146 ((n-Bu)2S); 278 (OPPhs). 

(2SO-Pr)2S, ^H-NMR/CDCla: 5 2.99 ppm (m) and 1.27 ppm (d). GC-MS: m/e 

118 ((iso-Pr)2S); 278 (OPPhs). 

(p-Cl-Ph)2S, GC-MS: m/e 255 ((p-Cl-Ph)2S); 278 (OPPhs). 

Deoxygenation of N-oxides. PhNMe2. GC-MS: m/e 121 (2,3-Dimethyl-2-

butene); 278 (OPPhs) and likewise the other tertiary amines formed from the N-

oxides. p-Me-PhNMe2,135; p-F-PhNMe2,139; p-Br-PhNMe2/ 200; p-N02-PhNMe2/ 

166 and pyridine, 79. 
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CHAPTER IV. 

THE OXIDATION OF ALKYNES BY HYDROGEN PEROXIDE CATALYZED 

BY METHYL RHENIUM TRIOXIDE 

A paper accepted by the Journal of Organic Chemistry 

Zuolin Zhu and James H. Espenson 

Abstract 

The oxidation of alkynes with hydrogen peroxide is catalyzed by 

methylrhenium trioxide. The reactions can be rationalized by postvilating that an 

oxirene intermediate is formed between a rhenium peroxide and the alkyne. 

Internal alkynes yield a-diketones and carboxylic acids, the latter from the 

complete cleavage of the triple bonds. Rearrangement products were observed only 

for aliphatic alkynes. Terminal alkynes gave carboxylic acids and their derivatives 

and a-ketoacids as the major products, but their yields varied with the solvent 

used. 

Introduction 

The stoichiometric oxidation of alkynes has been widely studied with 

reagents such as organic peracids,^'^ thallium nitrate/ ruthenium^ and osmium^ 

tetroxides, permanganate/'^ peroxomonophosphoric acid,^ peroxomolybdenum 

complexes,^® and dioxiranes.^^'^^ Examples of catalytic oxidations are fewer.^^'^^ 
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The oxidation of tenninal and internal alkynes usually yields different products. 

Terminal alkynes usually give carboxylic adds, coupling products, carboxylic adds 

with one carbon less, or a-keto carboxylic acids.Internal alkynes, on the other 

hand, usually form Q:,j3-vmsaturated ketones, a-diketones or deavage products of 

the triple bond. The products formed depend on the nature of the oxidizing agent 

and the reaction conditions.^^^^ 

Methylrhenium trioxide (CH3Re03 or MTO) catalyzes the epoxidation of 

alkenes with hydrogen peroxide.^'^^ In addition, this rhenium compoxmd catalyzes 

other oxygen-transfer reactions of hydrogen peroxide, such as the conversion of 

anilines to nitrosobenzenes and N,N-dimethylanilines to the amine oxides,^^ 

phosphines, arsines and stibines to their oxides,^^ organic sulfides to sulfoxides,-® 

thiolatocobalt to the sulfenatocobalt complex,^ and so on. 

Two active forms of the catalyst have been identified, with 1:1 and 1:2 ratios 

of rhenium to peroxide. The formulas are CH3Re(0)2(02), A, and CH3Re0(02)2/ B, 

which has been characterized crystallographicaUy.^ 

We have found that the oxidation of both terminal and internal alkynes by 

hydrogen peroxide is also catalyzed by MTO. These findings can be rationalized on 

the basis of an oxirene intermediate. 
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Results 

Internal alkynes. Three internal alkynes were used: diphenylacetylene, 4-

octyne, and 4,4-dimethyl-2-pentyne. The reactions were carried out in 

homogeneously in acetone and in various alcohols, and heterogeneously, in a two-

phase system, methylene chloride-water. The products formed depend to some 

extent on the choice of solvent. None of the alkynes reacted with hydrogen 

peroxide in 48 hr. but all of them were oxidized when the rhenium compound was 

added. 

Diphenylacetylene is resistant to oxidation by common organic peracids,^'^ 

which afford complex product mixtures with poor yields and low conversions. 

With MTO-hydrogen peroxide, however, the reactions can be carried to a 

satisfactory conversion (>84%) in homogeneous solution. The products formed in 

twelve alcohol solvents, with excess hydrogen peroxide and 10% MTO, are 

summarized in Table 4.1. The product is principally benzil in acetone and 

methanol. 

In the biphasic system CH2Cl2-water, on the other hand, over-oxidation 

evidently occurs, and mainly benzoic acid is produced. Rearrangement products 

were not observed in any of these solvents. In methanol a small amount of the a-

methoxy ketone was formed, and a trace of benzoic acid was also observed in 

acetone and methanol. The product is also principally benzil in the two-phase 

system. These results are similar to those obtained with trifluoroperacetic acid,^° 

with benzil the major product and benzoic acid the minor one. In contrast, with 

dimethyldioxirane, ketene-derived products predonainated." Aromatic alkynes are 

less reactive under these conditions than aliphatic alkynes, which showed >95% 

conversion. The aliphatic alkynes led to more complex mixtures of products. 
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Table 4,1. Product yields^-b from the oxidation of diphenylacetylene by hydrogen 

peroxide catalyzed by MTO in different alcohols. 

Product 

Alcohol Conv, % PhCOOH 
OH 

o o 

OR 

O 

MeOH 87 7 - 79 4 

EtOH 91 8 - 80 6 

n-PrOH 90 10 - 74 7 

n-BuOH 86 11 - 76 6 

n-Amyl-OH 84 14 - 78 -

PhCHzOH 86 16 6 75 -

2-BuOH 90 20 7 69 -

s-Amyl-OH 88 18 8 72 -

Cyclopentanol 89 19 7 71 -

PhCH(CH3)OH 87 17 11 70 -

i-BuOH 86 16 12 72 -

i-Amyl 87 17 10 72 -

^ Protocol: 1.78 g (10 mmol) diphenylacetylene, 1 mmol MTO, and 30 mmol 

hydrogen peroxide were used in 15 mL alcohol. 

^ Minor products, <10%, are from GC-MS, others are isolated yields. 
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Table 4.2. Product yields^ from the homogeneous oxidation of alkynes by 

hydrogen peroxide, catalyzed by CH3Re03 

Alkyne Acetone Methanol 

PhC^h (% conversion) 

PhC(0)C(0)Ph 57% 79% 

PhCH(0Me)C(0)Ph - 4 

PhC02H tr. 7 

PhC02Me 9 

Pr^CsCPr" (>97%) (>97%) 

Pr"C(0)C(0)Pr" 43 41 

(Pr")2CH2C02H 24 

Pr«C(0)CH=CHCH3 n 17 

Pr"C02Me _ 15 

Bu^C^Me (>99%) (>99%) 

Bu'C02H 86 58 

Bu^C(0)C(0)Me ~3 16 
O O 
11 / \ „2 ~2 

But-CH—CH2 

BufC(0)CH=CH2 ~l ~2 

Bu^C02Me - 12 

BufC(0)CH(0Me)CH3 _ -4 
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Table 4.2 
(continued) 

CH3(CH2)6C^H 

CH3(CH2)6C02H 

CH3(CH2)6C02Me 

(>96%) (>96%) 

95 18 

81 

PhC^H (88%) (84%) 

PhCH2C02H 65 ~2 

PhCH2C02Me - 95 

PhC(0)C02H 11 

^ Isolated yields, except minor products, <10%, from the GC-MS. 
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however; in acetone and methylene chloride, the a-diketone, the a-unsaturated 

ketone, the a-hydroxyketone, and the a,y3-epoxy ketone were found, along with the 

carboxylic acid from rearrangement or cleavage of the triple bond. Thus, 4-octyne 

gave 2-4% of butyric add in all three solvents. Other products, all minor, were also 

detected; see Table 4.2 for homogeneous reactions and Table 4.3 for the results 

under heterogeneous conditions. 

Terminal alkynes. Phenylacetylene and 1-nonyne were also included in this 

study. Compared to the internal alkynes, the products from the terminal alkynes 

were much simpler. The results are summarized in Tables 4.3-4.5. Oxidation of 

phenylacetylene in alcohols give satisfactory conversions. In primary alcohols, the 

major products are the esters, but they become minor in secondary alcohols (except 

cyclopentanol), and are not formed in tertiary alcohols. The major products are the 

carboxylic acids in acetone, the esters in methanol, and the a-ketocarboxylic acid in 

the biphasic methylene chloride-water system. Not detected were the alkyne 

dimers, formed by the oxidation of the terminal alk5me, and the carboxylic acid 

from C-C cleavage. 

The ratio of MTO to alkyne did not affect the product distribution, but it did 

alter the substrate conversion in a given reaction time. Oxidation of 10 mmol 

diphenylacetylene with 30 mmol hydrogen peroxide in methanol with varying 

quantities of MTO gave different conversions. MTO at 5% of Ph2C2 gave 65% 

conversion (80% benzil, 17% benzoic acid and ester); at 10% the conversion after 2 

days was 87% (79% benzil, 14% benzoic acid and ester). 
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Table 4.3. Product yields^ from the oxidation of alkynes by hydrogen peroxide, 

catalyzed by CH3Re03 in the biphasic solvent. 

Alkyne Conversion (%) Yield (%) 

PhC^Ph 73 

PhC(0)C(0)Ph 67 

PhC02H 17 

Pr"C^Pr« 92 

Pr"C(0)C(0)Pr" 41 

Pr"C(0)CH(0H)Pr« 24 
O O 
I I  /  \  

Pr"C-CH-CHEt 
21 

Bu^C^Me 94 

BU^C02H ~2 

Bu^C(0)C(0)Me 38 
o o 
" / \ 

Bu 'C-CH-CH2  
~2 

BU^C(0)CH=CH2  14 

(CH3)2C=C(CH3)C(0)CH3 31 

CH3(CH2)6C^H >95 

CH3(CH2)7C02H 31 

CH3(CH2)6C(0)C02H 47 

PhCsCH 89 

PhCH2C02H 21 

PhC(0)C02H 68 

^ Minor products, <10%, are from the GC-MS, others are isolated yields. 
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Table 4.4. Products from the oxidation of phenylacetylene by hydrogen peroxide 

catalyzed by MTO in primary alcohols. 

Alcohol Conversion (%) Products (%) Alcohol 

Ester Acid 

MeOH 88 96 tr. 

EtOH 87 96 tr. 

?j-PiOH 85 95 ~3 

n-BuOH 90 94 ~4 

n-Amyl-OH 87 85 10 

PhCH20H 86 60 33 

PhCH2CH20H 82 47 50 

^ Protocol; 1.03 g (10 mmol) phenylacetylene, 1 mmol MTO, and 30 mmol 

hydrogen peroxide were used in 15 mL alcohol. 

^ Minor products, <10%, are from GC-MS, others are isolated yields. 

Limiting peroxide. The data in the preceding sections pertain to 

experiments in which the alkynes were the limiting reagents with excess peroxide, 

the natural emphasis being the conversion of the alkynes. On the other hand, given 

the side-products observed, it became necessary to learn whether they are an 

immediate consequence of a complex pattern of reactions, or whether they more 

simply arise from the over-oxidation of the primary and initial product, the a-

diketone. Toward this end, we carried out experiments with diphenylacetylene, 

with excess diphenylacetylene (1 mmol), limiting peroxide (0.5 mmol), and 40 mg 

MTO (0.16 mmol). Data were obtained for the conversion of the acetylene in the 

three different solvents and for the product yields; the effective conversion relative 
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Table 4.5. Product yields^''' from the oxidation of phenylacetylene by hydrogen 

peroxide catalyzed by MTO in secondary and tertiary alcohols. 

Alcohol Conversion Product (%) 

PhC02H PhCH2C02H PhC02R PhCH2C02R 

2-BuOH 84% 38 17 8 30 

s-Amyl-OH 87 40 15 11 30 

Cyclopentanol 85 trace 10 - 84 

PhCH(CH3)OH 83 47 41 - 5 

i-BuOH 79 23 74 - -

f-Amyl-OH 84 22 71 - -

^ Protocol: 1.03 g (10 mmol) phenylacetylene, 1 mmol MTO, and 30 mmol hydrogen 

peroxide were used in 15 mL alcohol. 

Minor products, <10%, are from GC-MS, others are isolated yields. 
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to peroxide can also be obtained by calculation. These are the results; 

Solvent %Conversion %Conversion of PhC(0)C(0)Ph PhC02H/ 

ofPh2C2 H202(calcd) PhC02Me 

Acetone 12 50 87 11 

Methanol 24 90 88 10 

CH2CI2 24 96 100 

The reaction produces entirely benzil in methylene chloride, and nearly so in 

the other solvents. The data also illustrate that the reaction is the slowest in acetone, 

where peroxide remains even after the five days at ambient temperature allowed 

for these reactions. 

Discussion 

Because the reactions were carried out with excess hydrogen peroxide, B 

was the predominant form of the catalyst given the equilibrium constants for 

peroxide binding to MTO.^^ From the kinetic data, both B and dimethyldioxirane 

(DMDO)^^ have similar reactivities towards alkenes.^^ This evidently holds as well 

for alkynes. DMDO gives predominantly ketene-derived products, whereas MTO 

yields a-diketones as the major products from internal alkjmes. In the biphasic 

solvent mixture, MTO proved more reactive than peroxotungstophosphate, which 

gave <50% conversion of diphenylacetylene.^^ 
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The results obtained for alkyne oxidations, along with comparisons with the 

reactions in which alkenes are converted to epoxides by MTO/H2O2, lead us to 

suggest that the reaction proceeds initially with the formation of an oxirene 

intermediate. These elusive species have been alluded to previously.The initial 

step may be as shown in eq 4.1: 

p 
1 , A or B / \ 

R — c = c — ^  n  
^R^ (4.1)  

The ruthenium tetroxide-catalyzed reaction^^ serves as a precedent for this reaction. 

No mechanism was suggested, however, although it seems reasonable that the 

pathway is analogous to that of osmium tetroxide.^^ Following that step, it is 

further reasonable to propose yet another epoxidation step, such that a "double 

epoxide", intermediate I, would intervene on the path to the major product, the 

diketone: 

/\ /°\ , n 
0=C ^ R -C"C-R2 ^ ,C—C 

V V " iS 
I (4.2) 

Accepting this proposed pathway provisionally, we ask about the subsequent 

steps. Either the formation of I follows a concerted mechanism, such that an oxirene 

intermediate does not form, or the rearrangement of the oxirene to form a ketone 

(or a ketene, as shown subsequently) occurs more slowly than oxygen transfer from 

A or B to the oxirene double bond. 

The carboxylic adds are formed by cleavage of the triple bond, for which 

two pathways can be explored. First, and similar to the mechanism we reported for 

the reaction between CH3Re03 and epoxides,a possible pathway involves the 
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reaction of the oxirene with MTO to form a "bisalkoxy" complex whose C=C 

double bond is then converted to an epoxide with A or B; we call this path "a", and 

note that it will form a second intermediate, II. Oxidation of II yields the carboxylic 

add upon cleavage of the C-C bond. An alternative is presented by path "b", 

which allows II to be formed from MTO and I, eq 4.3: 

O 

Q MTO 0-^ 

^ \ II C. 2 path a / \ 
" CH3 O r2 

I 
Q pji 

path b —O -MTO R^-C-OH + C-OH 

II (4.3) 

Alternatively, a pathway that may also be possible that involves the typical 

conversion of an a-diketone to two carboxylic adds by a Baeyer-Villiger oxidation, 

eq 4.4.38 

O 
A or B p Or 

R, Y Y - ̂ Y 
0 0 O (4.4) 

Cleavage of an alkyne triple bond to give two carboxylic adds is well known using 

metal oxides.^^ The mechanism by which A and B may act is very likely similar to 

that proposed for permanganate,^'8 ruthenivim tetroxide,^ and thallium(in) nitrate.^ 
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The carboxylic acids, or their methyl esters in methanol, were possibly 

formed from both terminal and internal alkynes by a ketene rearrangement. The 

following equations depict the oxidation of the alkyne to an oxirene by A or B. The 

oxirene then rearranges to a ketene which adds water (or methanol) to generate the 

add (or ester), as in eq 4.5. 

O O 
/\ 

.C=Q 
A or B 

3I \ R2 
> c=o ROH 

R2 
\ " OR 

(4.5) 

The conversion of the carbene to a ketene, the photochemical Wiolff rearrangement, 

finds precedent.Unlike other secondary alcohols, the oxidation of 

phenylacetylene in cyclopentanol gives a higher yield of the ester. As a result, we 

suggest the competition between water and alcohols is subject to a steric influence, 

as the relatively inflexible structure of cyclopentanol offers less steric demand than 

the other, freely-rotating alcohols. 

The a-hydroxy (or methoxy) ketones, we believe, form directly from the 

oxirene intermediate. Two possible schemes are illustrated by eq 4.6: 

H2O (ROH) 

0  
/ \  .c=c. 

HO V 

pi o 

CH-C^ 
/ q2 

(R)HO R 

H2O 

(4.6) 

According to this, the oxirene either imdergoes nucleophilic attack by water, giving 

an intermediate that then rearranges to the a-hydroxy ketone (as suggested by the 
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ring-opening reaction of epoxides with water^^)^ or it rearranges to an oxocarbene 

which then iindergoes an insertion reaction with water 

The a,p-unsaturated products were obtained only for the internal aUcynes. 

These products are believed to result from an intermediate that arises from 

rearrangement of an oxirene. a,jS-Epoxy ketones are formed by the direct oxidation 

of a,iS-unsaturated products with A or B. That is depicted by this equation 

sequence in which R' is Me for 4,4-dimethyl-2-pentyne and R' is H for all the 

others: 

R' 

R 

O 
/\ 

\ C-C^R. 

R" 

W /̂ 
R" 

R"^f>R'  
0 

A o r B  R V  

-— / 
R" 

O 
II 

CR- ^ 

(4.7) 

The final step in this reaction, the conversion of an a,j3-unsaturated ketone to an 

a,/J-epoxy ketone, can be carried out by MCPBA^ and hydrogen peroxide.^^ This 

conversion requires alkaline conditions, and utilized HOO~. It is possible, based on 

this precedent, that ring-opened forms of A or B are responsible for the final step in 

eq 4.7. 

Experimental section 

Materials. The alkynes were obtained from commercial sources, and the 

purity of each was verified by GC-MS before use. The solvents were purified by 

standard methods.'^^ Hydrogen peroxide (30%, Fisher) was used without further 
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treatment. Methylrhenium trioxide'^^ was prepared from Re207 and Sn(CH3)4 

according to the literature procedure.^ 

Procedures for the oxidation of alkynes. The alkyne (30 mmol) was 

dissolved in 300 mL of acetone or methylene chloride, then CH3Re03 (10 mol% of 

the alkyne) was added. After the solid had dissolved, a moderate excess of 

hydrogen peroxide (100 mmol) was added. The reaction vessel was closed, and the 

solution was stirred for two days at room temperature, during which time the 

reaction was monitored by GC-MS. The excess of peroxide was decomposed by 

adding a little manganese dioxide. After filtration, most of the solvent was removed 

under vacuum, and then the solution was extracted with ether three times. The 

ether was removed, the residue dried over magnesium sulfate, and the products 

separated by fractional distillation under vacuum. 

The known products from 4-octyne and 4,4-dimethyl-2-pentyne were 

identified by comparison to data in the literature.^'^^. Spectroscopic data and the 

results of elemental analysis are given in Table 4.6 and Table 4.7. 

When an alcohol was used as the solvent, only 10 mmol of 

diphenylacetylene and phenylacetylene, 1 mmol MTO, and 30 mmol H2O2 were 

used. After decomposition of the excess hydrogen peroxide with Mn02, the 

products were separated by distillation under reduced pressure or vacuum. Benzil 

obtained from the distillation was recrystallized from ethanol. The products were 

identified by ^H-NMR, ^^C-NMR and by mass spectroscopy in comparison with 

the results from NMR and MS libraries; see Table 4.8.^'^^ 
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Table 4.6. Spectral and analytical data for the oxidation products of 4-octyne^ 

Compound ^H-NMR ^^C-NMR Mass Spec. Elemental 

Analysis 

O 

O 

OH 

0.91 (t), 1.59 13.2,17.6 142(0.35)^124 Found (Calcd.) 

(m),2.78(t) 29.7,249.8 (1.77), 112 (28.85), C: 67.80 (67.57) 

71 (100), 57 (10.37), H: 9.94 (9.92) 

43 (87.63) 

AA||A/ 0.91 (m), 1.58 13.3,16.4, 126 (12.41), 96 C: 76.15 (76.14) 

O (m),2.02(m), 17.6,26.5, (23.42), 82 (100), 67 H: 11.30 (11.18) 

2.71 (t), 6.12 28.8,128.3, (4.66), 55 (37.04), 

(m), 6.83 (m) 154.7,198.8 41 (15.42) 

0.91 (m), 1.59 13.4,14.1, 144 (4.32), 126 0 66.89(66.63) 

(m),1.97(t), 17.8,19.4, (1.55), 114 (5.22), H: 11.18 (11.18) 

2.73 (t), 3.57 29.7, 39.7, 101 (41.99), 73 

(br), 4.48 (t) 72.8, 247.7 (100), 57 (14.44), 55 

(21.37), 41 (23.82) 
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Table 4.6 
(continued) 

/Jsv 0.91 (m), 0.97 12.8,13.4, 142 (1.91), 128 C; 67.34 (67.57) /Jsv (t), 1.41 (q), 1.58 17.7, 20.2, (3.23), 112 (1.38), H: 9.83 (9.92) 

(m), 2.72 (t) 34.5, 44.3, 

45.4,206.5 

97 (5.96), 82 

(16.83), 71 (100), 57 

(13.29), 55 (13.57), 

43 (75.25) 

O^OH 

A A A  
0.92 (t), 1.34 11.7,21.8, 144 (1.78), 129 C: 66.89 (66.63) 

AAA (m), 1.61 (m). 25.4, 46.2, (3.42), 114 (1.67), H: 11.24(1.18) 

2.47 (m), 12.21 183.1 86 (47.34), 72 (100), 

(s) 55 (5.56), 43 (32.50) 

Oc:^OMe 
0.92 (t), 1.34 11.7, 21.8, 158 (2.26), 128 C: 68.32 (68.31) 

AAA (m), 1.61 (m). 25.4, 45.9, (3.70), 115 (21.11), H: 11.58 (11.46) 

2.45 (m), 3.64 (s) 51.2,174.3 96 (8.76), 86 (100), 

69 (6.02), 57 

(22.07), 41 (21.05) 

^ NMR spectra were recorded in CDCI3. 
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Table 4.7. Spectral and analytical data for the oxidation products of 4,4-diinethyl-2-

pentyne. 

Compoimd ^H-NMR ^^C-NMR Mass Spec. Elemental 

Analysis 

1.19(d), 1.23 (s), 14.7,17.8, 
O 

xA/ 
OMe 3.51 (s), 4.27 (q) 25.4,59.7, 

77.4, 234.5 

Found (Calcd.) 

C: 66.74 (66.63) 

144 (2.52), 129 

(1.04), 113 (0.76), 

87 (100), 85 (16.45), H: 11.37 (11.18) 

72 (60.77), 57 

(79.04), 41 (66.98) 

O >cv 
o 

1.21 (s), 2.39 (s) 22.7,25.1, 129 (1.30), 112 C: 65.60 (65.60) 

43.4,242.7, (1.27), 110 (3.27), H: 9.48 (9.44) 

243.9 86 (8.49), 84 (2.13), 

83 (2.98), 69 (1.94), 

67 (1.35), 57 (100), 

43 (25.14) 

O 
KA 

OH 
1.19 (s), 12.5 (s) 25.2, 43.7, 

184.3 

102 (0.64), 87 C: 58.92 (58.80) 

(1.22), 72 (14.63), H: 10.10 (9.87) 

57 (100), 42 (54.13) 

O 
X^A 

OMe 
1.18 (s), 3.57 (s) 25.2,43.5, 117 (0.53), 116 

56.7,172.8 (4.05), 101 (1.37), 

85 (2.03), 75 (9.75), 

56 (100), 41 (54.13) 

C: 62.09 (62.04) 

H: 10.52 (10.41) 
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Table 4.8. Spectral data for the oxidation products of phenylacetylene and 

diphenylacetylene in alcohols. 

Product ^H-NMR (5/ppm) ^^C-NMR (5/ppm) 

PhCH2C02-Amyl" 

PhCH2C02CH2Ph 

7.28 (m, 5H); 4.05 (q, 2H); 

3.60 (s, 2H); 1.24-1.75 (m, 

6 H); 0.90 (t, 3H) 

7.20-7.39 (m, lOH); 4.28 

(s, 2H); 3.64 (s, 2H) 

174.05,134.18,129.22, 

128.50,126.99, 65.01, 

41.46,34.10, 28.43,22.54, 

13.93 

170.67,138.27,134.15, 

129.19,128.55,128.51, 

127.77,127.63,126.96, 

63.34,41.39 

171.53,137.71,134.20, 

129.56,129.27,128.54, 

128.45,128.20,127.04, 

65.33,41.40,40.54 

171.44,134.28,129.32, 

128.45,126.90,77.52, 

41.70, 32.55, 23.63 

PhCH2C02CH2CH2Ph 7.12-7.30 (m, lOH); 4.30 

(t, 2H); 3.58 (s, 2H); 2.79 

(t, 2H) 

PhCH2C02-c-Pentyl 7.27 (m, 5H); 4.34 (m, 

1H);3.56 (s,2H);1.57-

1.76 (m, 8H) 
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Table 4.8 
(continued) 

PhCH2C02-Amyls 7.29 (m, 5H); 4.11 (m, 171.74,134.15,129.23, 

IH); 3.61 (s, 2H); 1.11- 128.45,127.00,63.59, 

2.16 (m, lOH) 43.54,37.23, 25.03, 22.41, 

11.16 

PhCH2C02-Bu« 7.29 (m, 5H); 4.09 (t, 2H); 174.76,134.17,129.20, 

3.62 (s, 2H); 1.59 (m, 2H); 128.49,126.98, 64.73, 

1.33 (m, 2H); 0.90 (t, 3H) 41.43,30.55,19.02,13.62 

PhCH2C02Et 7.25 (m, 2H); 4.13 (q, 2H); 171.26,134.03,129.11, 

3.59 (s, 2H); 1.24 (t, 3H) 128.28,127.02, 60.79, 

41.37,14.10 

PhCH2C02-Pr" 7.29 (m, 5H); 4.05 (t, 2H); 172.93,134.13,129.15, 

3.63 (s, 2H); 1.63 (m, 2H); 128.43,126.93,66.38, 

0.89 (t, 3H) 41.36, 21.83,10.22 

PhC02-Bu« 7.39-8.51 (m, 5H); 4.32 (t, 

2H);1.74(m, 2H); 1.47 

(m, 2H); 0.98 (t, 3H) 

166.66,132.81,130.67, 

129.54,128.23, 64.87, 

30.92,19.41,13.84 
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CHAPTER V 

THE KINETICS AND MECHANISM OF OXIDATION OF ANILINES BY 

HYDROGEN PEROXIDE AS CATALYZED BY METHYLRHENIUM TRIOXIDE 

A paper published in Journal of Organic Chemistry * 

Zuolin Zhu and James H. Espenson 

Abstract 

The oxidation of anilines by hydrogen peroxide in methanol is catalyzed by 

methylrhenium trioxide, CHsReOs- The major product of the oxidation of aniline at 

room temperature is nitrosobenzene. For 4-substituted N,N-dimethylanilines, the 

N-oxide is the only product. The rate constants for the oxidation of 4-substituted 

N,N-dimethylanilines follow a linear Hammett relationship with p = -1.19. The rate 

constants for the reaction between CH3Re(0)2(02), referred to as A, and 4-X-

C6H5NMe2 are; 4-Me, 24.5; 4-H, 18.4; 4r-F, 12.7; 4-Br, 8.7 and 4^N02, ^ s" 

^ This shows that electron withdrawing substituents inhibit the reaction. The 

corresponding rate constant for the oxidation of aniline is 2.04 + 0.11 L mol~^ s~^, 

whereas it is 178 ± 11 L mol~^ s~^ for the oxidation of N-phenylhydroxylamine to 

nitrosobenzene. A mechanism has been assigned on the basis of the kinetics and 

product yields. The data are consistent with the attack of the nucleophilic nitrogen 

* Zhu, Z.; Espenson, J. H. ]. Org. Chem. 1995,60,1326. 
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atom on the peroxidic oxygen atom of A. The kinetics of the reaction of CH3Re03 

and hydrogen peroxide in methanol were also investigated. The formation of the 

1:1 peroxide compound A is characterized by an equilibrium constant K-[ = 261 ± 6 

L mol'^. The equilibration occurs rapidly: ki = 1150 ± 60 L mol~^ s~^ and k-i= 4.4 ± 

0.4 s~^ at 25.0 °C. The bis-peroxide compound, CH3Re(0)(02)2(H20), B, forms more 

slowly. The rate constant is k2 = 308 ± 16 L mol~^ s"^, and the equilibrium constant 

is K2 = 814 ± 14 L mol'^ at 25.0 °C in methanol. B reacts with the anilines, but much 

more slowly than A. 

Introduction 

Various reagents, including metal compounds, organic peroxides and 

hydrogen peroxide, have been used to form oxygen-containing derivatives of 

anilines. Sometimes the reagents are used in combination for greater efficiency. The 

oxidation of anilines by chromium(VI) compounds leads to benzoquinones.^ In the 

presence of manganese dioxide, substituted anilines form symmetrically 

substituted azobenzenes.^ Anilines are readily converted to azo compounds by 

nickel peroxide,^ and are slowly oxidized to azobenzenes by silver carbonate on 

Celite.5 The oxidation of JV-arylhydroxylamines with lead tetraacetate gives the 

corresponding nitroso compounds.^ Anilines are oxidized to azoxybenzenes by 

hydroperoxides, catalyzed by Ti(rV),^ and to azobenzenes by hydrogen peroxide, 

catalyzed by cetylpyridinium heteropolyoxometalates.^ 

The current environmental imperatives require the substitution of a 'greener' 

oxidizing agent for those that produce wastes, salts, or other by-products. 

Hydrogen peroxide is potentially an important substitute, since its only reduction 

product is water. This and other advantages have been cited.^'^® 
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In general, however, hydrogen peroxide reactions are characterized by high 

activation energies, which result in slow reactions.^^ For all practical purposes a 

catalyst is required. In addition to the kinetic acceleration the catalyst will provide, 

the enhancement of the desired electrophilic activity of peroxide will minimize the 

importance of free radical pathways which are undesirable owing to the mixture of 

products. 

Methylrhenium trioxide, CHsReOa, is a homogeneous catalytic activator of 

hydrogen peroxide in both organic solvents and water. It can also be used 

heterogeneously on Al203-Si02 as a catalyst support.^ 2 oxygen is transferred 

to the substrate from either of the two peroxides that result from CH3Re03 and 

hydrogen peroxide. This reaction forms rhenium peroxides having 1:1 and 1:2 

ratios of metal to peroxide.^^ These compounds are CH3Re(0)2(02) and 

CH3Re(O)(O2)2(H20), referred to as A and B.13 Scheme I presents the catalytic 

cycles for the oxidation of a general substrate S, allowing for both A and B to be 

effective catalysts. 

CHsReOs 

S-0 

Scheme I 

S-0 

This general scheme is, for example, representative of the oxidation of 

thiolatocobalt(ni) complexes in aqueous solutions of dilute perchloric acid,^^ and of 

organic sulfides^^ and phosphines^^ in acetonitrile-water. It may also apply to 

olefin epoxidation in ferf-butanol.^^ 
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Since the oxidation of amines by methylrhenium trioxide with hydrogen 

peroxide has not been reported to date, we undertook a study that included both 4-

substituted N,N-dimethylanilines and some ring-substituted anilines. The tertiary 

anilines afford the N-oxides predominately, whereas aniline itself yields primarily 

nitrosobenzene. The kinetics of these reactions will give more information about 

the mechanism by which the rhenium catalyst operates. Since the data suggested 

that the oxidation of aniline nught occur via JV-phenylhydroxylamine, the kinetics 

of its rhenium catalyzed oxidation with hydrogen peroxide, was also investigated. 

Experimental section 

Materials. N-Phenylhydroxylamine was synthesized from nitrobenzene.^^ 

This product was obtained as colorless needles (m.p. 83-84 °C), and in the process 

we also obtained another, previously unreported but relatively minor product. It 

was identified as azoxybenzene [M.S. 77(100) 91(30) 105(26) 51(25) 65(22) 170(20) 

198(19) 64(17)] and m.p. 87-89 °C. 

Se/NaBH4 // V-NHOH + 

11% 

4-Methyl-N,N-dimethylaniline and 4-fluoro-Ar,N-dimethylaniline were 

prepared according to the literature with these minor changes;^^ (1) The system 

containing the aniline and trimethyl phosphate was heated only gently until the 
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exothermic reaction was completed, before being brought to reflux. (2) The solution 

containing base was extracted with 1:1 ether-hexane instead of ether only. 

Methylrhenium trloxide was prepared from Re207 and Sn(CH3)4.20 The 

organorhenium peroxide B,  CH3Re(0)(02)2(H20)/  was prepared from 

methylrhenium trioxide.^^ Methanol and hexanes were purified by standard 

methods.The anilines and other reagents used in this study were obtained 

commercially. 

General procedure for sjmthesis of nitrosobenzene. 1.0 mL of ArNH2 was 

dissolved in 10 mL methanol, mixed with 3.0 mL 30% hydrogen peroxide, after 

which 50 mg CH3Re03 was added. The solution was stirred at room temperature 

for 2 hours, and then extracted three times with methylene chloride. The combined 

extracts were dried over anhydrous sodium sulfate, filtered and evaporated under 

reduced pressiire. The product was purified by col\m\n chromatography on silica 

gel using 1:5-10 ethyl acetate-hexane as the eluent. The product from each aniline 

was identified spectroscopically by comparison to literatiire values.23 

General procedure for the synthesis of N-oxides. A mixture of 2-4 g of the 

4-substituted N,N-dimethylaniline (ArNMe2), 200 mg of CH3Re03 and 10 mL of 

30% hydrogen peroxide in 10 mL methanol was stirred at room temperature for 2-5 

hours. The product obtained after the solvent had been evaporated under vacuum 

was recrystallized from methylene chloride. Each product was identified by 

comparison of its spectra and melting point with those recorded in the literature.24 

Kinetic  s tudies.  The progress of  the react ion was monitored 

spectrophotometrically, using a Shimadzu UV-2101PC spectrophotometer and a 

Sequential DX-17MV stopped-flow instrument from Applied Photophysics Ltd., 
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depending on the time scale of a given experiment. Kinetic studies were carried out 

by monitoring the disappearance of N,N-dimethylaniline at 251 nm, the 

disappearance of 4r-bromo-N,N-dimethylaniline at 265 nm , the disappearance of 

4-fluoro-N,N-dimethylaniline at 315 nm, and the accumulation of 4r-mtTo-N,N-

dimethylaniline N-oxide at 231 nm, and 4-methyl N,N-dimethylaiuline N-oxide at 

265 nm. The kinetics with excess N,N-dimethylaniline for measurement of rate 

constant of the formation of A (the 1:1 peroxide of CH3Re03 and hydrogen 

peroxide) was studied by monitoring the decrease in absorbance at 328 rim. 

Reaction mixtures were prepared with hydrogen peroxide added last. The 

order of addition is important, since the steady-state analysis of the kinetic system 

applied most precisely when the compounds A and B were not allowed to 

accumulate prior to the start of the oxidation. 

Results 

Equilibritim measurements. It was necessary to remeasure the equilibrium 

constants of the reactions between CH3Re03 and hydrogen peroxide in methanol. 

As cited above, this interaction results in the reversible formation of peroxides with 

1:1 and 1:2 ratios rhenium to peroxide, as given in eq 1-2. Their equilibrium 

constants JCj and K2 were determined from the equilibrium absorbances in the 

range of 345-400 nm in experiments in which no aniline was present. 
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CH-, O 

0 

o o 

+ H2O2 
H3C 0 

II 0.'° _ o 

H20 

The values of the constants K-^ and K2 were obtained by the nonlinear least-

squares fitting of the data to the following equation;^^ 

The total concentration of CH3Re03, [Relj, was 0.52 mM and the 

concentration of hydrogen peroxide was varied over a range 1.2-76 mM, using 

eight concentrations. The equilibrium absorbance was recorded at 345,360,380 and 

400 nm. The absorbance readings obtained as a function of hydrogen peroxide 

concentration were fitted to eq 3 by means of the program GraFit that allowed a 

global fit of all the multiwavelength spectra simultaneously. The data and fitting at 

one wavelength are shown in Figure 5.1. 

The equilibrium constants obtained are K-^ = 261 ± 6 L mol'^ and K2 = 814 ± 

14 L mol'^. The values are considerably larger than thOse in waterwhich are 7.7 L 

mol"^ and 145 L mol"^;  the system in methanol  is  st i l l  cooperat ive ( i .e .  K2 > K^),  

although to a lesser extent than in water. 

_ £0 + eAJ<^l[H2O2] + gBi'Cli^2[H2O2p 
[Re]T l + Ki[H202] + ̂CiK2[H202p 

(5.3) 
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Figure 5.1. A plot showing the increases in absorbance at 345 nm that result 

from the formation of two rhenium peroxides in a 0.52mM solution of CH3Re03 as 

a function of the concentration of hydrogen peroxide in methanol. This curve and 

similar ones at other wavelengths were used to evaluate the equilibrium constants 

Ki and K2 for the stepwise binding of peroxide ions. 
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The initial presence of a small concentration of water in the reaction did not 

shift the equilibrium, nor did the addition of a small concentration (2-20 mM) of 

water after the peroxides were formed. This is significant, since it bears on the 

question of the coordination of solvent to the peroxide B, and perhaps to A. Were 

the coordinated solvent methanol, or were the solvent not coordinated at all, then a 

change in the concentration of water, which itself would then be a reaction product 

free in solution, would shift the equilibrium position. 

Experiments showed that this was not the case imder the reaction conditions 

employed. We take this as evidence that water is the ligand coordinated to rhenium 

in moist methanol, despite the fast that the activity of methanol is higher than that 

of water. In other words, the peroxide compounds A and B are the same species 

here as they are in water or mixed water-organic solvents. Although the binding of 

water in B could be confirmed in THF by the use of nmr,^^ this was not possible 

in the hydroxylic solvent CD3OD, where the formation of D2O, coordinated or not, 

eliminates a measurable proton nmr signal. 

Rate constants. The kinetics of reactions 1 and 2 were then examined in 

methanol. It proved impossible, however, to find conditions where only one of the 

reactions could be studied. The two were therefore studied together, although the 

accuracy was less than if each could have been studied separately. The kinetic data 

consisted of absorbance-time traces that were taken at 300 nm where the 

absorbance decreases with the reaction progress since CH3Re03 itself has a larger 

molar absorptivity than A or B at this wavelength. The concentrations used were 

[CH3Re03]-p = 1.6 mM, and [H2O2] was varied in the range 9.8-98 mM. 

If we postulate that the equilibrium reactions that produce compounds A 

and B also describe the kinetics, the rate equations are: 
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^ = fci [CH3Re03] [H202]  -  k- i lA]  -  ̂:2 [A] [H202]  +  fc2[B]  (5  

^ = fc2[A][H202] -1.2 [B] (5.5) 

where the possibility that water plays a specific role in the mechanism is ignored 

for the meantime; we shall return to that point later. These equations were solved 

for the case [H2O2] » [Re]j, such that [H2O2] remained essentially constant in each 

experiment. The resulting expressions for [A] and [B] are the sums of two 

exponentials, but the two relaxation times are not simply those for the separate 

reactions in isolation. Rather, both relaxation times are complex functions of the 

four separate rate constants.^"^^ The buildup of [B] is given by: 

^ (5.6) 

where the two observed rate constants are related to the parameters of the kinetic 

scheme. The approach to the solution is best made through certain combinations of 

the two rate constants. The expressions for their simi and their product are useful; 

the equations are: 

^2+^3 — (^1 + ̂ 2)[H202] + ^-1 + k-2 (5.7) 

A2 X A3 = A:ifc2[H202]^ + k^k-2[ii202] + k-ik-2 (5.8) 

This pair of equations was used for the analysis of the kinetic data, which 

consisted of ten experiments at five concentrations of hydrogen peroxide in the 

range 0.01-0.10 M. The absorbance buildup followed biexponential kinetics, 

characterized by the two rate constants ^2 X3, in accord with this model. The 

absorbance-time traces were fitted to a double exponential function with a floating 
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end-point. Figure 5.2. depicts a typical absorbance-time trace obtained from 

stopped-flow experiments, and superimposed on it the biexponential fit. The close 

fit of the data lends credence to this model. 

The analysis of the data was done according to eq 5.7-5.8. To obtain 

numerical resxilts the value of was replaced k-^/K-^, and that of k_2 by ^2/1^2, with 

the equilibrium constants K•^^ and Kj set at their known values. The data fit gave the 

values of two of the rate constants;^^ the rate constants for the reverse reactions 

were then calculated from the equilibrium constants. The results are as follows, 

with the aqueous values shown in parentheses: 

k-i = 1150 ± 60 (Aq. 77) L mol"'' s"^ k_^ = 4.4 ± 0.4 (Aq. 9.0) s'^ 

^2 = 308 ± 16 (Aq. 5.2) L mol'^ s"^ k_2 = 0.38 ± 0.06 (Aq. 0.04) s'^ 

The addition of up to 10 mM water, when hydrogen peroxide is in excess, 

did not change the rate in methanol; higher concentrations of water caused the rate 

to decrease appreciably. A few experiments were also carried out in acetonitrile, 

where the kinetic retardation of added water was evident even at the lowest 

concentrations. The "forgiving" nature of methanol with respect to the 

concentration of water was the major reason for choosing methanol as the solvent. 

Since water is present in the peroxide solutions, roughly 4-5 mol per mol of 

hydrogen peroxide, and more is produced in the reaction, its effect on the rates of 

reaction in solvents where the rate is very sensitive to water would have greatly 

complicated a quantitative kinetic study. 
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Figure 5.2. A typical absorbance-time trace at 300 nm from a stopped-flow 

experiment in methanol, in which 1.6 mM CH3Re03 and 19.6 mM hydrogen 

peroxide form an equilibrium mixture of the rhenium peroxides A and B. The 

smooth curve shows the fitting of the data to a bi-exponential rate equation. 
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It should be added that the involvement of water might have been taken into 

account more explicitly, by relating [H2O] to [H2O2]/ and then including it 

explicitly in the expressions for the thermodynamic and kinetic data. We opted not 

to follow this course, however, since to do so would require defining the role of 

water more precisely than the data allow. 

Para-substituted N,N-diinethylanilines. The oxidation of these anilines 

with hydrogen peroxide is strongly catalyzed by CH3Re03. In methanol ArNMe2 

forms only the N-oxide at room temperature according to eq 9. The individual 

substrates studied and the yields of the product isolated from each are given in 

Table 5.1. 

Table 5,1. Isolated yields of the N-oxide from the oxidation of para-substituted 

dimethylanilines by hydrogen peroxide, as catalyzed by CH3Re03. ^ 

para substituent: CH3 H F Br NO2 

% Yield; 87 92 85 89 88 

^ In MeOH at room temperature, with an approximate mole ratio of aniline : 

peroxide : rhenium of 20 :50 :1. 

cat. CHsReOa 
X—( ^NMe2 +H2O2 » 

S\  / } —NMe2 + ^20 
^ ^ (5.9) 
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The yields of this reaction were >85%. This convenient reaction may be used 

for the preparation of aromatic amine N-oxides. The product yields for the 

compounds with the different para substitutents did not differ significantly 

although it was suggested that electron-withdrawing groups will inhibit the 

reaction.29 The catalyzed reactions might, however, be subject to kinetic influences, 

in that those with electron withdrawing groups might take longer reach 

completion. To explore the kinetic requirements in this practical sense, and also to 

gain insight into the molecular mechanism, we undertook a study of the reaction 

kinetics. 

The kinetics of the oxidation of 4-substituted N,N-dimethylanilines. As 

the reaction was clean, forming only the N-oxide, it was straightforward to study 

the kinetics. These anilines do not react with hydrogen peroxide without the 

rhenium catalyst. Figure 5.4 shows the absorbance changes without and with the 

catalyst. 

The kinetics of the reactions catalyzed by CH3Re03 were evaluated by the 

initial rate method. The data showed that the reaction is first-order with respect to 

both CH3Re03 and anil ine.  Plots  were made (see Figure 5.5)  of  yj  = (-

d[Aniline]/di)i versus [Re]j at constant [PhNMe2]o and of vi versus [Aniline] q at 

constant [Re] j. The rate constants were obtained from the slopes of the plots. 

For PhN(CH3)2 a series of experiments was carried out at five values of 

[H2O2]/ in the range of 1.6-10.0 mM, with 69 PhN(CH3)2 and 10.6 ^lM 

CH3Re03. The values of were constant at (1.26 ± 0.01) x 10"® L mol'^ s"^, proving 

the zeroth-order dependence on [H2O2] under these conditions. 

In a separate series, the rate was determined under conditions where the 

formation of A governed the rate. Thus this would constitute an independent 
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Figure 5.4. Typical absorbance-time kinetic traces at 251 nm for the 

oxidation of PhNMe2 in methanol by hydrogen peroxide with and without 

CH3Re03. The concentrations in MeOH were 13.3 |j.M CH3Re03, 7.8 mM H2O2, 

and 0.11 mM [PhNMe2]. 
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Figure 5.5. The variation of initial rate of reaction of dimethylaniline with a 

constant and excess [H2O2], 2.76 mM, as a function of [Rej-p at 45 |iM PhNMe2, and 

[PhNMe2] at 4.15 CH3Re03. 
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determination of ky and also validate the reaction scheme. So that the kinetic term 

in k-^ would be the dominant one, an excess of the aniline was used. In the initial 

stage of the reaction, only A was formed. With high [PhNMe2], however, the 

subsequent oxidation reaction proceeded more rapidly, and the k-^ step was nearly 

rate-controlling. 

The initial rates from stopped-flow experiments were fit to the equation = 

A:i[Re]'p[H202]. These determinations were carried out with a constant 

concentration of CH3Re03 and a varying hydrogen peroxide concentration, the 

progress of the reaction being monitored at 328 nm where A8 = 105 L mol'^ cm'^. 

The plot of v'l vs. [H2O2] v^ras linear. The slope gave = (1.18 ± 0.06) x 10^ L mol"^ 

s~^. This value agrees well with that obtained from the double exponential curve 

fitting of the peroxide reactions alone, which gave k^ = 1.15 x 10^ L moH s'^. Based 

on above observations, we suggest that the reaction follows the pathway shown in 

Scheme II. 

Scheme II 

CH3 

+H2O2 
o 

o 

CH3 

(A) 

o 

slow 

+ CHsReOa 

The oxidation of iV,N-dimethyl aniline by B was studied with B in excess. 

The reaction was investigated with [B] varying in the range of 1.5-7.5 mM, while 
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[PhNMe2] was kept constant at 11 ^IM; then [B] was kept constant at 1.5 mM, and 

[PhNMe2] varied in the range of 5.5-28 |iM. The reaction proved to be first-order 

with respect to [B] and [PhNMe2]. The rate constant was obtained from the plot of 

initial rate of the reaction versus [B] or [PhNMe2] is (1.14 ± 0.07) x 10'^ L mol'^ s"l. 

In comparison, the oxidation of NJvT-dimethyl aniline by A has = 18.4 L mol'^ S"^. 

Clearly, the reactivity of B towards the oxidation of ]V,]V-dimethylanilines is 

negligible compared to that of A. 

The steady-state approximation for [A] and [CH3Re03] gives the rate 

equation assuming that Scheme II is operative: 

^[Aniline] _ fc3[Re]T[H202][Aniline] 
dt M±MAnilin^ + [H202] 

With excess hydrogen peroxide, such that (fc_| + /:3[Aniline])/A:| « [H2O2], 

-iE^fiaSl=fc3[RelT[AniUne] (5.11) 

This form agrees with the results reported above, in which the orders with 

respect to catalyst and aniline are unity, whereas that with respect to hydrogen 

peroxide is zero. From initial rate experiments, we obtained values for the rate 

constants for the reactions of 4-methyl-N,N-dimethylaniline, 4-fluoro-N,N-

dimethylaniline, 4-bromo-N,N-dimethylaniline, N,N-dimethylaniIine and 4-nitro-

N,N-dimethylaniline at 25.0 °C in methanol. The values are given in Table 5.2. 
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Table 5.2. Rate constants for the oxidation of para-substituted dimethylanilines 

Para substituent; CH3 H F Br NO9 

k^/Lmol-^s-h 24.5 18.4 12.7 8.7 1.9 

^ In MeOH at 25.0 °C. The rate constants were calculated from initial rate 

determinations carried out with high concentrations of hydrogen peroxide. 

^ The value of is given by eq 5.11. 

Oxidation of N-phenylhydroxylamine. This compound was examined 

because we came to believe that it might be an intermediate in the reaction of 

aniline itself. The reaction in the absence of CH3Re03 was examined with 

[PhNHOH] = 53-160 |iM and [H2O2] in the range of 1.04-5.02 mM. The reaction 

gave nitrosobenzene in about 88% yield. The reaction is first-order with respect to 

both N-phenylhydroxylamine and hydrogen peroxide, as represented by eq 11. 

The rate constant for the rate-controlling step in Scheme III is A: = 0.78 ± 0.04 L 

mol~^ s~^. 

- = A:[PhNH0H][H202 ] 
at (5.12) 
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Scheme III 

N-Phenylhydroxylamine: Catalysis by CH3Re03. The catalyzed reaction 

was investigated with [Re]-j- = 14.5-58.4 |iM, [H2O2] = 1.5-10 mM, and [PhNHOH] 

in the range of 58.4-233 |aM. The reaction with added CH3Re03 proved to be much 

faster than the uncatalyzed reaction. Under these condtions, with excess hydrogen 

peroxide, the catalyzed reaction was first-order with respect to both CH3Re03 and 

phenylhydroxylamine, and nearly independent of [H202]. For reasons of 

simplicity, the initial rate method was used to study the catalyzed reaction. The rate 

constant for the catalyzed reaction of PhNHOH is/:3 = 178±llL mol"^ s'^. The data 

suggest that Scheme 11 also applies, with phenylhydroxylamine in place of the 

aniline. The rate law is the same as that for the oxidation of anilines, as given by eq 

10. With a sufficient excess of hydrogen peroxide, such that [H2O2] » (1<_| + 

k3[PhNHON])//:i, the expression for the reaction rate reduces to the experimental 

result expressed by eq 5.11. 

Oxidation of anilines of the formula ArNH2. The major product of the 

oxidation of aniline by hydrogen peroxide catalyzed by CH3Re03 is 

nitrosobenzene, according to eq 5.13. The product yields are listed in Table 5.3. 



www.manaraa.com

141 

Table 5.3. Yields of the nitrosoarenes from the oxidation of substituted 

anilines by hydrogen peroxide, as catalyzed by CH3Re03. ^ 

substituent: 0-CH3 H m-CH3 f'-CH3 P-OCH3 p-c-hexyl p-Cl 

% Yield; 78 86 79 82 89 73 52 

^ In MeOH at room temperature, with an approximate mole ratio of aniline : 

peroxide : rhenium of 20 : 500 :1. 

The data suggest that the product yields may be lower for electron-withdrawing 

substituents. 

/ \ cat. CHsReOa 
^—NH2 + 2H2O2 

^-^NO + 3H2O 

(5.13) 

The GC-MS results showed that small amounts of the nitroarenes and traces 

of the azobenzenes were formed as well. The nitroarenes probably come from the 

further oxidation of nitroso compound. We used nitrosobenzene itself as starting 

material, and confirmed the occurence of eq 5.14, a much slower and therefore 

minor reaction, under the same conditions. 

/=\ cat. CHaReOs /=\ 
NO + H2O2 v/ ^^~~N02 + H2O 

X X (5.14) 
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The azobenzene may come about from the condensation of nitrosobenzene 

with aniline. We mixed nitrosobenzene and aniline together in methanol, and 

showed that the major product was azobenzene, which did not require the rhenium 

catalyst. 

Kinetics of the catalyzed oxidation of PhNH2. The reaction was monitored 

by the buildup of nitrosobenzene at 320 nm where the Ae is 5000 L moH cm'^. The 

initial rate was calculated from the initial slopes of the absorbance-time curves; 

dAbs/di values were converted to the reaction rates, -d[PhNH2]/df, by division by 

A£. 

The kinetic study was carried out in two parts. In the one, we maintained 

[Relj constant and varied [PhNH2], and vice-versa; see Figure 5.6. The results 

together were used to prove that eq 5.10 applied here as well. 

With a large excess of hydrogen peroxide, the reaction became first-order 

with respect to both [Re]j and [PhNH2]o, consistent with the limiting form shown 

in eq 5.11. Plots of v-^ vs [Re]j and vs. [Anilinelg were linear. The rate constant for 

PhNH2 was /C3 = 2.04 L mol~^ s~^. 

The oxidation of aniline by B was also studied with B in excess. The reaction 

was investigated with [B] varying in the range of 2.0-10.0 mM, while [Aniline] was 

kept constant at 12 jjM; then [B] was kept constant at 2.0 mlVl, and [Aniline] varied 

in the range of 6-30 jiM. The reaction proved to be first-order with respect to [B] 

X 

(5.15) 
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and [Aniline]. The rate constant was obtained from the plot of initial rate of the 

reaction versus [B] or [Aniline] is (3.34 ± 0.15) x 10"^ L mol"^ s"^. As in the case of 

N,N-dimethyl aniline, the reactivity of B towards the oxidation of aniline is also 

negligible compared to that of A. 

It can be seen from Table 5.3 that the anilines with an electron donating 

group (e.g. p-anisidine) gave higher yields. Based on the product yields and on the 

kinetic study of para-substituted N,N-dimethylanilines, N-phenylhydroxylamine 

and aniline, the assumption that the N-phenylhydroxylamine is the intermediate 

in this MTO cataltzed oxygen transfer reaction is reasonable. We suggest that this 

reaction occurs as shown in Scheme IV. 

Discussion 

The oxidation of para-substituted N,N-dimethyl aniline is inhibited by 

electron-withdrawing groups. The rate constants from Table 2 follow a linear 

Hammett relationship. The reaction constant p = -1.19, suggesting that the rate-

controlling step is the nucleophilic attack of nitrogen lone-pair electrons of anilines 

on a peroxidic oxygen of A. 

Electron-donating groups attached to the nitrogen atom of aniline also 

increase the rate constant. For example, the ks for aniline of 2.04 L mol"^ s"^ 

increases for PhNMe2 by about ninefold, to 18.4 L mol'^ s'^. 
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Figure 5.6. Variation of initial rate of oxidation of PhNH2 at constant [H2O2] = 
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N-Phenylhydroxylamine has an OH group attached to nitrogen. As a result 

the rate constant, 178 L mol"^ s'^/ is about 90 times larger than that of aniline. As it 

is known that aniline oxidation by peroxyadds proceeds to nitrosobenzene by the 

way of hydroxylamine as the intermediate,30 So we suggested that the 

hydroxylamines may be intermediates in this rhenium-catalyzed oxidation of 

anilines to the nitrosobenzenes. Since the second step is about 90 times faster than 

the first, it is difficult to detect the existence of N-phenylhydroxylamine directly. 

The postulate that ArNHOH are intermediates does allow a ready explanation for 

the formation of the observed products. 

The rate constant for the formation of A from CH3Re03 in methanol is much 

larger than that in pH 1 aqueous media (MeOH: ki = 1150 L mol"^ s'^; H2O: 77 L 

mol"^ s"^) This suggests that A might be stablized in methanol, perhaps because the 

activity of water is so much lower in methanol. As we mentioned earlier, the 

addition of more than a trace of water to the reaction of N,iV-dimethylaniline 

decreased the rate of the formation of the N-oxide. The stabilization by methanol 

can also explain why the equilibriiim constant for the reaction of CH3Re03 and 

H2O2/ Ki = 261 L mol'^ in methanol, is almost 40 times larger than that in water at 

pH 1, Ki = in. 
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The oxidations of tertiary amines to N-oxides by peroxy adds also show-

negative rho values. For example, p = -2.35 for the oxidation of substituted 

pyridines.^^ It would be interesting to know if the oxygen of peroxy adds is more 

eledrophilic than the oxygen of A. 

Although anilines ArNH2 can be oxidized to the corresponding nitroso 

compounds with peroxyacetic acid,^^ they need either long reaction times (48 

hours) or heating. With the rhenium catalyst, a reartion time of one hour at room 

temperature sioffices. 
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CHAPTER VI 

A CONVENIENT SYNTHESIS OF BIS(ALKOXY)RHENIUM(VII) COMPLEXES 

A paper submitted to the Inorganic Chemistry 

Zuolin Zhu, Ahmad M. Al-Ajlouni and James H. Espenson 

Abstract 

Compovmds of the general formula CH3Re(0)2(0CR2CR20) were prepared 

from the reaction between CH3Re03 (MTO) and the epoxide in dry methylene 

chloride, and were characterized spectroscopically. The compounds are 

bis(alkoxides), containing a chelating diolate dianion. The diolates react with 

triphenylphosphine to form the alkene and regenerate MTO. Mechanisms of these 

reactions are suggested. 

Introduction 

The study of high oxidation state organorhenium compounds has been a 

field of continuing activity, thanks to the success of methylrhenium trioxide 

(CH3Re03 or MTO) in catalytic processes. This catalyst is effective in oxidations^ 

olefin metathesis,^ the olefination of aldehydes,^ and in the preparation of other 

compounds with three-membered rings.^ The syntheses of some rhenium 

compovmds derived from MTO have been reported.^ Epoxide formation is a key 

reaction,"'^ and it bears directly on these findings, as we now report. 
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Re(VII) complexes containing a chelated bis(diolate) ligand can be 

synthesized by refluxing MTO with 2,3-dimethyl-2,3-diol.^'^ Here we report a more 

convenient method for this preparation. A different series of related compounds 

consists of chelated bis(diolates) of the Cp*Re-oxo series, Cp*ReO(diolate).^^'^^ 

Resiilts and discussion 

The reaction between MTO and an epoxide, eq 1, leads to diolate complexes. 

Five epoxides were used in this study: 2,3-dimethyl-2-butene epoxide, styrene 

epoxide, cis-cyclododecane epoxide, cis-stilbene oxide and trans-stilbene oxide. 

All except the last react with methylrhenium trioxide to give the corresponding 

bis(alkoxy)rheiuum(VII) compounds (I) in nearly quantitative yield. 

We suggest that the first step is the approach of the oxygen atom of the 

epoxide to the rhenium atom, at a site remote from the Re-C bond (II). Steric 

reasons may account for the failure of trans-stilbene oxide to react with MTO, since 

a similar approach would be impeded by the disposition of the phenyl groups (III). 

The bis(alkoxy)rhenium(VII) complexes react with triphenylphosphine in 

dry benzene at room temperature to yield MTO, triphenylphosphine oxide, and 

olefin: 

(6.1) I 

CH3Re(0)2(0CR2CR20) + PPhg CHgReOg + PhgP^O + CR2CR2 (6.2) 
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CHa CH3 

,0 

Release of an alkene is strongly enhanced by i.he phosphine, and it occurs 

essentially upon mixing. Without phosphine, alkenes are released only slowly, if at 

all, from these Re(VII) derivatives; if heated, the MTO is destroyed. In wet 

acetonitrile, the reactions of styrene epoxide and 2,3-dimethyl-2-butene epoxide 

with MTO also gave bis(alkoxy)rhenium(Vn) complexes in the presence and in the 

absence of H202. The yield (-10-15%) was much less than that obtained in dry 

benzene or in chloroform. In the absence of hydrogen peroxide, alkenes were 

released slowly over 3-5 days at room temperatiore. In addition, perrhenate ions 

and methanol were formed as decomposition products of the monoperoxo-Re(Vn) 

species, Because epoxides are also formed from the reaction of A with alkenes, 

the first step in eq 6.3 is reversible. 

CH3 

A 

OH-
Re04 + CH3OH 

(6.3) 

The reaction of the diperoxo-Re(VI[), B, ([^[202] = 0.5 M and [MTO] = 0.02 

M) with styrene was complete in 3-4 hours. Under the same conditions, in the 
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absence of H2O2, the ^H-NMR spectrum showed that less than 50% of the styrene 

oxide had reacted with MTO after 5 days. Because A and B exhibit similar 

reactivity toward the epoxidation of olefins,^ these results indicate that the reverse 

rate constant in eq 3 is much larger than the forward one and so the equilibrium 

constant for the first step is much less than unity. In the presence of H2O2, A and B 

are present, so any alkene formed reacts rapidly with A or B and can not be 

observed. Oxygen is transferred from styrene epoxide (0.1 M) to 2,3-dimethyl-2-

butene (0.1 M) in acetonitrile in the presence of MTO (0.02 M). The reaction 

produced styrene and 2/3-dimethyl-2-butene epoxide in ~ 5-10% yield, eq 4. After 

three day, only -20% of styrene epoxide and 2,3-dimethyl-2-butene were 

consumed. Other products, l-phenyl-l,2-ethanediol, 2,3-dimethyl-2,3-butanediol 

and bis(alkoxy)rhenium-(VII) complexes were also observed. In the absence of 

MTO no styrene or 2,3-dimethyl-2-butene epoxide were observed, clearly 

substantiating the need for a catalyst. 

2,3-Dimethyl-2-butene epoxide most probably results from the reaction of 

23-dimethyl-2-butene with A, formed from styrene epoxide with MTO as shown in 

eq 6.4. We have not explored the unimolecular reactions that lead to alkene release. 

On the other hand, the literature reports the slow unimolecular release of alkene 

from rhenium(V) diolates.^^-^^ 

The most substantial difference between Re(V) and Re(Vn) diolates is not so 

much the oxidation state of the metal, but the nature of the rhenium compound that 

remains when each diolate dissociates an alkene. The Re(V) compound produces R-

(6.4) 
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Re02, and Re(VII) gives R-Re03. The latter is a very stable substance, whereas the 

former, although known,^'^^-^^ is not particularly stable. That difference must siu-ely 

influence the transition state energies, favoring the Re(Vn) compound. 

There is, we believe, a close interrelation of three processes: (a) alkene 

epoxidation with hydrogen peroxide catalyzed by MTO that proceeds through the 

peroxorhenium compound CH3Re(0)2(02), A; (b) diolate formation from an 

epoxide with MTO as described herein; and (c) alkene release from the diolate 

which has been better characterized for 

The interrelationship between these processes, in part conjectural, is 

diagrammed in Scheme 1. This diagram depicts the epoxidation occuring via the 

peroxide A, proceeding through one or more intermediates either to the epoxide or 

the diolate. In practice epoxidation is very rapid, as is the conversion of MTO to A 

by reaction with hydrogen peroxide. Although not depicted, the diperoxo rhenium 

complex B would be expected to react in a parallel fashion. Thus diolate formation 

is of minimal importance until the supply of peroxide is exhausted (assuming the 

alkene was taken in excess); alternatively, as in the procedure described here, no 

peroxide was used, allowing the transformation of the epoxide to the diolate. 

Hydrogen peroxide accelerates the MTO-catalyzed ring opening reaction of 

epoxycyclohexane in tert-butanol-water solutions;^^ with MTO alone, ring opening 

is catalyzed but the reaction is slower. 

Certain possiblities for the exdssion of an alkene from a rhenium(V) diolate 

are shown in Scheme In particular, Hammett correlations have been used 

to rule out some possibilities, and CH2 migration is the avenue suggested. By the 

same token, CH2 migration (to O, not Re, see IV) may provide the avenue for the 

reaction under discussion here. 
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Eeperimental section 

Synthetic procedure. A solution of methylrhenium trioxide (250 mg, 

Immol) in 15 mL dry methylene chloride was treated with the desired epoxide (1.2 

mmol). After one day at room temperature, during which time the solution 

changed from colorless to yellow to deep red, the solvent was removed under 

vacuum. The light yellow bis(alkoxy)rhenium(VII) compounds were purified by 

vacuum sublimation. These procedures were carried out under argon. 2,3-

Dimethyl-2-butene epoxide was prepared as described^® and the other epoxides, 

available commercially, were purified using standard methods. 

Spectroscopic data 

Spectroscopic data for the isolated products in CDCI3 are as follows: 

(a) For Ri = R2 = R3 = R4 = Me, ^H-NMR: 5 = 2.38 (3H), 6 = 1.34 (12H); ^^C-NMR: 5 

= 96.45 (C-Me2), 5 = 42.70 (M^Re), 5 = 25.75 (C-Me2). ^H-NMR in CD3CN : 5 = 

2.39 (3H),5 = 1.36 (12 H); 

(b) for Ri = R2 = R3 = H, R4 = Ph, iH-NMR: 6 = 2.44 (3H), 6 = 4.15 (IH), 5 = 4.52 

(IH), 5 = 5.35 (IH), 6 = 7.05 (5H); ^^C-NMR: 5 = 136.54, 6 = 129.52, 5 = 128.85, 5 = 

126.31, 5 = 87.18,5 = 85.25 and 5 = 42.83. ^H-NMR in CD3CN : 5 = 2.45 (s, 3H), 8 = 

4.78 (dd, IH), 5 = 5.23 (t, IH), 5 = 5.54 (dd, IH), 5 = 7.32 (m, 3H), 5 = 7.47 (m, 2H); 

(c) for the reaction between MTO and cyclododecane epoxide, ^H-NMR: 5 = 2.41 

(3H), 5 = 4.24 (2H), 5 = 2.17 (4H), 5 = 1.82 (4H), 6 = 1.35 (8H), 6 = 1.01 (4H); "^^C-

NMR; 5 = 94.54, 5 = 42.07, 5 = 31.22, 5 = 28.73, 8 = 28.73, 8 = 26.18, 8 = 24.75 and 8 = 

22.83; 

(d) reaction between MTO and ds-stilbene, ^H-NMR: 8=2.47 (3H), 8=4.31 (2H), 8= 

7.43 (lOH); ^^C-NMR: 8=134.69; 5=127.52, 8=126.03, 8=125.88, 8=98.76 and 8=42.72. 
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GENERAL SUMMARY 

Methylrhenium trioxide, CHsReOs (MTO), catalyzes the decomposition of 

ethyl diazoacetate to yield diethyl 2-butenedioic acid esters or azine depend on the 

ratio of MTO and diazo chemicals used. In the presence of substrates which contain 

double bonds, such as olefins, imines or organic carbonyl compounds, 

cyclopropanes, aziridines or epoxides were formed by cycloaddition. These 

reactions may occur through a [2+3] process. Catalytic reactions between ethyl 

diazoacetate and alcohols, phenols, thiols, thiophenols or amines yield a-alkoxy 

ethyl acetates, a-thio ethyl acetates or ethyl glycine esters. Organic azides was 

converted azo compounds mediated by MTO. In the presence of 

triphenylphosphine, MTO catalyzed the reactions between organic azides and 

aromatic aldehydes that jaelded organic imines in high yields. 

The interaction between MTO and alcohols gives dehydration products, 

such as ether or olefins, depending on the alcohols used. The electron-donor groups 

of aromatic alcohols cause the disproportionation of alcohols to occur, leading to 

carbonyl compounds and alkanes. The amination of alcohols with amines was also 

catalyzed by MTO. Besides these reactions, oxygen transfer occurs from epoxides, 

sulfoxides, tertiary amine N-oxides and some metal oxides to triphenyl phosphine 

in the presence of catalytic amoimt of MTO. 

Several oxidations with molecular oxygen and hydrogen peroxide were 

found to be catalyzed by MTO. With molecular oxygen, tertiary phosphines were 

converted to corresponding oxides; using hydrogen peroxide, anilines were 
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converted to nitroso benzene and tertiary aromatic amines were transferred to N-

oxides. The fact that electron withdrawing groups decrease this reaction rate 

constants suggest peroxo group of A and B is electrophilic under these conditions. 

Coordination of epoxides with MTO yields corresponding 

bis(alkoxy)rhenium (VII) complexes which are water sensitive and react with 

triphenyl phosphine to form triphenyl phosphine oxide, olefins and MTO. 
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